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Higgs amplitude mode in the vicinity of a (2 + 1)-dimensional quantum critical point
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We study the “Higgs” amplitude mode in the relativistic quantum O(/N) model in two space dimensions. Using
the nonperturbative renormalization group we compute the O(N)-invariant scalar susceptibility in the vicinity
of the zero-temperature quantum critical point. In the zero-temperature ordered phase, we find a well-defined
Higgs resonance for N = 2 with universal properties in agreement with quantum Monte Carlo simulations. The
resonance persists at finite temperature below the Berezinskii-Kosterlitz-Thouless transition temperature. In the
zero-temperature disordered phase, we find a maximum in the spectral function which is, however, not related to
a putative Higgs resonance. Furthermore we show that the resonance is strongly suppressed for N > 3.
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Introduction. At low temperatures many condensed-matter
systems are described by a relativistic effective field theory
with O(N) symmetry (N > 2): quantum antiferromagnets,
superconductors, Bose-Einstein condensates in optical lattices,
etc. Far from criticality, collective excitations in these systems
are in general well understood. In the disordered (symmetric)
phase there are N gapped modes. In the ordered phase, where
the O(N) symmetry is spontaneously broken, there are N — 1
gapless Goldstone modes corresponding to fluctuations of the
direction of the N-component quantum field, and a gapped
amplitude (“Higgs”) mode [1].

The fate of the Higgs mode in low-dimensional systems
near a (zero-temperature) quantum critical point (QCP) has
been a subject of debate. Does the Higgs mode exist as a
resonancelike feature or is it overdamped due to its coupling
to Goldstone modes? In three dimensions, where the effective
field theory is four-dimensional and noninteracting at the QCP,
the Higgs resonance becomes sharper and sharper as the QCP
is approached. This has been beautifully confirmed in the
quantum antiferromagnet TICuCls [2] (see also Ref. [3] for
an experiment with cold atoms). In two space dimensions, the
effective field theory is strongly coupled at the QCP and the
existence of the Higgs resonance is not guaranteed. Further-
more the visibility of the Higgs mode strongly depends on
the symmetry of the probe [4]. The longitudinal susceptibility
is dominated by the Goldstone modes and diverges as 1/w
at low frequencies [5-7], thus making the observation of
the Higgs resonance impossible. The O(N)-invariant scalar
susceptibility (i.e., the correlation function of the square of the
order parameter field) has a spectral weight which vanishes
as @> and is a much better candidate [4]. Quantum Monte
Carlo (QMC) simulations of (2 + 1)-dimensional systems
have shown that the Higgs resonance shows up in the scalar
susceptibility and remains a well-defined excitation arbitrarily
close to the QCP for N =2 and N = 3 [8-11]. A signature
of the Higgs mode has recently been observed in a two-
dimensional Bose gas in an optical lattice in the vicinity of
the superfluid—Mott-insulator transition [12].

In this Rapid Communication, we use a nonperturbative
renormalization-group (NPRG) approach to the relativistic
quantum O(N) model and compute the scalar susceptibility
near the QCP. We obtain the spectral function for arbitrary val-
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ues of N.For N = 2, we find a well-defined Higgs resonance in
the zero-temperature ordered phase with universal properties
in good agreement with QMC simulations of a related model
[8,9] and the Bose-Hubbard model [10,11]. The resonance
persists at finite temperature below the Berezinskii-Kosterlitz-
Thouless (BKT) transition temperature; finite-temperature
effects modify the spectral function only at low frequencies
o < T. Although we also find a maximum in the spectral
function in the zero-temperature disordered phase, our RG
analysis shows that this maximum cannot be interpreted as a
Higgs resonance as recently suggested [11]. Furthermore, we
find that the resonance is strongly suppressed for N > 3.

Methods. We consider the relativistic quantum O (N) model
defined by the (Euclidean) action

_ Tvor + Lo
stg = | dx{z(vw +55000)

o 5 U0, 52 2
—@> + — (9> —he?}, 1

where we use the notations x = (r,r) and f dx =

fo’s dt [ d*r. The N-component real field ¢ is periodic in the
imaginary time 7: @(r,7 + ) = @(r,7) (8 = 1/T and we set
h = kg = 1). rg and ug are temperature-independent coupling
constants and c is the (bare) velocity of the ¢ field. We have
added a uniform time-dependent source A(t) which couples
to @(x)? (and will eventually be set to zero). The model is
regularized by an ultraviolet cutoff A acting both on momenta
and frequencies.

In two space dimensions, the phase diagram of the rel-
ativistic quantum O(N) model is well known (Fig. 1) [1].
At zero temperature (and for 4 = 0), there is a quantum
phase transition between a disordered phase (ry > ro.) and
an ordered phase (ry < ro.) where the O(N) symmetry of the
action (1) is spontaneously broken (i and ¢ are considered as
fixed parameters). The QCP at ry = rq. is in the universality
class of the three-dimensional classical O(N) model with a
dynamical critical exponent z = 1 (this value follows from
Lorentz invariance at zero temperature); the phase transition
is governed by the three-dimensional Wilson-Fisher fixed
point. At finite temperatures, the system is always disordered,
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FIG. 1. Phase diagram of the relativistic quantum O(N) model
in two space dimensions (N > 2). The thick line shows the zero-
temperature ordered phase with long-range order (LRO), while the
dashed lines are crossover lines between the renormalized classical
(RC), quantum critical (QC), and quantum disordered (QD) regimes.
The dotted line shows the limit of the high-T region where the physics
is not controlled by the QCP anymore. (For N = 2, there is a finite-
temperature BKT transition line for ry < ro., which terminates at
T = 0 for ry = ry..)

in agreement with the Mermin-Wagner theorem, but it is
possible to distinguish three regimes in the vicinity of the QCP
depending on the temperature dependence of the correlation
length &£(T): a renormalized classical regime where £(7") ~
(c/ ps)e?™Ps/(N=2T (with p, the zero-temperature “stiffness”),
a quantum critical regime where £(T") ~ ¢/ T, and a quantum
disordered regime where £(7T") ~ £(0) [1,13]. For N = 2 and
ro < roc, there is a finite-temperature Berezinskii-Kosterlitz-
Thouless (BKT) phase transition [14] and the system exhibits
algebraic order at low temperatures. The BKT transition
temperature line Tggt terminates at the QCP ry = rq,.
The zero-momentum scalar susceptibility is defined by

x(ion) = / dx " [{p(x)2(0)) — (p(0)%)?]

_ 8%1In Z[h]
~ Sh(—iw,)8h(iw,)
where Z[h] is the partition function obtained from the action

(1) and h(iw,) the Fourier transform of h(t). The spectral
function

@

h=0

x" (@) =Im[x(iw, > 0+ i0")] 3)

is obtained by analytical continuation from Matsubara fre-
quencies w, = 2nwT (n integer) to real frequencies w. At
zero temperature and in the universal regime near the QCP
(scaling limit) [15], x” takes the form [16]

x () = AiAWV@i(%), )

where the index +4/— refers to the disordered and ordered
phases, respectively. In the disordered phase, A o (rg — ro.)"
is the gap in the excitation spectrum (with v the correlation-
length exponent at the QCP). In the ordered phase, A is defined
as the gap at the mirror point (with respect to the QCP) in the
disordered phase; the ratio A / p; between A and the stiffness o
is an N-dependent universal number [17]. A4 is anonuniversal
cutoff-dependent constant, while ®_(x) is a universal scaling
function. For o > A, x"(w) ~ @>~%/” is independent of A. In
the ordered phase, the low-energy behavior w < A is entirely
determined by the Goldstone modes and x”(w) ~ w? [16]. In
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the disordered phase, the system is gapped and x”(w) vanishes
forw < 2A.[Since x"(w) = —x"(—w)is odd, we discuss only
the positive frequency part.]

To implement the NPRG approach, we add to the action (1)
an infrared regulator term ASi[¢] indexed by a momentum
scale k such that fluctuations are smoothly taken into account
as k is lowered from the microscopic scale A down to zero
[18-20]. This allows us to introduce the scale-dependent
effective action

Tulé.h] = — In Zy[J.h] +/de b ASSL (5)

defined as a modified Legendre transform of the free energy
—In Z;[J,h] that includes the subtraction of AS;[¢]. Here
¢(x) =6 In Zi[J,h]/8J(x) = (@(x)) is the order parameter
and J an external source which couples linearly to the ¢
field. The variation of the effective action with k is given
by Wetterich’s equation [21]

Telg.h] = 1Tr{ Re (TP 19, h1 + R) ). (6)

where F,(f) [@,h] denotes the second-order functional derivative
of I'x[¢,h] with respect to ¢. In Fourier space, the trace
involves a sum over momenta and Matsubara frequencies as
well as the O(N) index of the ¢ field. R; is a momentum-
frequency dependent cutoff function appearing in the defini-
tion of the regulator term ASi[@]. The scalar susceptibility
xx(iwy,) [Eq. (2)] is obtained from the second-order functional
derivative of I'y[¢,h] with respect to the source i [22].

We solve the flow equation (6) using two main approx-
imations. The & = 0 part of the effective action I'y[¢, k] is
solved using the Blaizot-Mendez-Wschebor approximation
[23-25] combined with a derivative expansion [18,19]. As
for the h-dependent part, we use the following truncation:

1
Uil ] = Tel.01 + 5 / dydy' h(y)H"?(y — y)h(y")

+ / dx dylp(x) — po s JHZ " (x — yh(y), (7)

where we have introduced the O(N) invariant p = ¢?/2 and
its value pg; at the minimum of ['x[¢,h = 0]. We refer to
the Supplemental Material for more details on the NPRG
calculation of the scalar susceptibility [22].

By numerically solving the flow equation for a given set of
microscopic parameters (A, ug, ro, etc.), we obtain the scalar
susceptibility x(iw,) = xx=o(iwy,). In practice, we compute
X (iw,) for typically 50 or 100 frequency points and then use
a Padé approximant to deduce the spectral function x"(w)
[26]. (For previous implementations of this method to compute
dynamical correlation functions, see Refs. [7,27-29].)

Higgs resonance in the ordered phase. Figure 2 shows the
scalar susceptibility x(iw,) in the T = 0 ordered phase for
N =2 and various values of ry. By plotting A x(w,) —
x(0)] as a function of the rescaled Matsubara frequency w, /A,
we observe a data collapse in agreement with the expected
universality. The subtraction of x(0) eliminates a nonsingular
nonuniversal constant [8]. We expect the exponent 6 to be
equal to 3 — 2/v 22 0.02248 [using v =~ 0.6717 for the three-
dimensional O(2) model]; within our approximations we find
6 ~ 0.1361. Higher-order truncations of the effective action
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FIG. 2. (Color online) A~[x(iw,) — x(0)] vs w,/A in the
T = 0 ordered phase (N = 2) for various values of r, (0.001 < ro. —
ro < 0.005and A = 1).

I'y[@,h] change the value of 6 but hardly the shape of the
Higgs resonance in the spectral function.

The spectral function for N =2 is shown in Fig. 3 for
various values of ry and 7 = 0. Again we observe a data
collapse when A~ x”(w) is plotted as a function of @/ A. In the
low-energy limit, the flow equation (6) is fully determined by
the Goldstone mode, which leads to x”(w) x w’ as observed
in Fig. 3 (see inset). For w > A, we find the critical scaling
x" () ~ »’ with @ the exponent determined from the scaling
of x(iw,) (Fig. 2). There is a well-defined Higgs resonance
whose location w = mpy and full width at half maximum
vanish as the QCP is approached (ro — ro.). The universal
ratio my /A ~ 2.4 is compatible with the QMC estimates
2.1(3) [8] and 3.3(8) [11]. Up to a multiplicative factor
which depends on the nonuniversal prefactor A_ (and was
determined neither in the QMC simulations [8,11] nor in the
present approach), the shape of the resonance, given by the
universal scaling function ®_, is in very good agreement with
the QMC result of Ref. [8]. This gives strong support to the
validity of our NPRG approach.

Figure 3 shows that the resonance persists at finite
temperatures below the BKT transition temperature when
T < Tkt =~ 0.42A. At frequencies w > T, temperature has
no noticeable effect: The behavior of the system is essentially
quantum and the spectral function (including the Higgs reso-
nance near w ~ myg > T) is well approximated by its 7 = 0
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FIG. 3. (Color online) Left: spectral function A~ x”(w) vs w/A
in the 7 = 0 ordered phase (N = 2) for various values of ry (0.001 <
Foe — o < 0.005 and A = 1). The inset shows the * dependence at
small frequencies. Right: spectral function at finite temperature below
the BKT transition temperature.
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FIG. 4. (Color online) A~ x"(w)/N vs w/A for various values
of N in the T = 0 ordered phase.

value. At frequencies w < T, the system behaves classically
and the w® dependence of the spectral function at 7 = 0 is
modified. In this frequency range, the numerical procedure
to perform the analytic continuation becomes questionable.
Nevertheless, noting that the spectral function is dominated by
the Goldstone mode when w < A, we can use perturbation
theory to obtain

4 ~ 3 2
X (w) ~ w coth(ZT) ®)
forw,T <« A.We conclude that x”(w) ~ T w? at low frequen-
ciessw L T.

In Fig. 4 we show that the Higgs resonance is significantly
suppressed for N > 3 (when we vary N continuously between
2 and 3 we observe a gradual suppression). QMC simulations
predict that the resonance is still marked for N = 3 [8,9].
This discrepancy could be due to the limited precision of our
method and more refined calculations are necessary to reach a
definite conclusion regarding the precise form of ®_(x). For
N = 1000 we recover the exact N — oo result [16] showing
no sign of a Higgs resonance.

Absence of Higgs resonance in the T =0 disordered
phase. Figure 5 shows the spectral function x”(w) in the
zero-temperature disordered phase for N = 2. x”(w) vanishes
for w < 2A, rises sharply above the threshold, and exhibits
a maximum for w ~ 2.5A. Again these results are in good
agreement with QMC simulations [8—11]. It has been sug-
gested that the maximum observed in the spectral function
can be interpreted as a Higgs resonance even though the
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FIG. 5. (Color online) A~%x"(w) vs w/A in the T =0 disor-
dered phase (N = 2) for various values of ry (0.001 < ro. — 19 <
0.005and A = 1).
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FIG. 6. (Color online) x;(w) vs w/A for various values of
t=In(k/A) (T =0 and N =?2). Left panel: ordered phase
(t; = —In(§;A) ~ —5.2). Right panel: disordered phase (oo
vanishes for t >~ —3.9).

system is disordered [10,11,30]. However, the behavior at
length scales smaller than the correlation length £ is typical of
a critical system [31,32]; at no length scales does the system
behave as if it were ordered. This makes the 7 = 0 disordered
phase fundamentally different from the finite-temperature
phase below the BKT transition even though both phases are
characterized by the absence of true long-range order.

To illustrate this point, let us discuss the spectral function
Xi(w) as a function of the renormalization group (RG)
momentum scale k. In the ordered phase, the RG flow
exhibits a crossover between a critical regime k > EJ_' and
a Goldstone regime k < 5;1, where §; = c/p; ~ ¢/ A is the
Josephson length [17]. Figure 6 shows that the Higgs resonance
is absent in the critical regime of the flow k > EJ_' and
quickly builds up once k reaches the Josephson scale 5]1. At
nonzero but small temperature, T < Tgkr, the flow exhibits a
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quantum-classical crossover for k ~ T'/c < ?;‘jl which mod-
ifies the low-frequency behavior of the spectral function but
not the Higgs resonance.

In the disordered phase, the flow is critical as long as
po.x (the minimum of the effective action I'y[¢p]) remains
nonzero. At the value k = k. ~ £~! for which Po.k vanishes,
the maximum above the gap is still not formed. It builds up for
k < k. when the RG flow is in the disordered phase (oo x = 0).
This definitively rules out the interpretation of the peak in the
spectral function as a Higgs resonance. By the same argument
we can also rule out the existence of a Higgs resonance in
the finite-temperature disordered phase (quantum critical and
quantum disordered regimes).

Conclusion. In summary, we have calculated the scalar sus-
ceptibility x (w) in the vicinity of a (2 4 1)-dimensional QCP.
Besides the confirmation that a Higgs resonance is present
for N =2 in the T = 0 ordered phase, and the calculation
of the universal properties of the spectral function x”(w) in
agreement with quantum Monte Carlo simulations, we have
shown that the resonance persists at finite temperatures below
the BKT transition temperature. The spectral function then
shows a Tw? dependence for w <« T. We have also studied
the possibility that a Higgs resonance exists in the zero- or
finite-temperature disordered phase (characterized by a finite
correlation length £): Our RG analysis unambiguously reveals
that the maximum observed in the spectral function cannot be
interpreted as a Higgs resonance. Finally, we have shown that
the resonance is strongly suppressed when N > 3. For N = 3,
our result disagrees with Monte Carlo simulations and more re-
fined calculations are necessary to reach a definite conclusion.
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