
October 2013

EPL, 104 (2013) 16002 www.epljournal.org

doi: 10.1209/0295-5075/104/16002

Quantum XY criticality in a two-dimensional Bose gas

near the Mott transition
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Abstract – We derive the equation of state of a two-dimensional Bose gas in an optical lattice
in the framework of the Bose-Hubbard model. We focus on the vicinity of the multicritical
points where the quantum phase transition between the Mott insulator and the superfluid phase
occurs at fixed density and belongs to the three-dimensional XY model universality class. Using a
nonperturbative renormalization-group approach, we compute the pressure P (µ, T ) as a function
of chemical potential and temperature. Our results compare favorably with a calculation based
on the quantum O(2) model —we find the same universal scaling function— and allow us to
determine the region of the phase diagram in the vicinity of a quantummulticritical point where the
equation of state is universal. We also discuss the possible experimental observation of quantum
XY criticality in an ultracold gas in an optical lattice.

Copyright c© EPLA, 2013

Introduction. – Understanding the various phases of
matter and the transitions between them is one of the main
goals of condensed-matter physics. Of particular interest
are (continuous) quantum phase transitions between dif-
ferent ground states, driven by quantum fluctuations re-
lated to Heisenberg’s uncertainty principle (for reviews,
see refs. [1–4]). Although these transitions occur at zero
temperature, the quantum critical point (QCP) controls
the behavior of the system in a wide temperature range
and often leads to intriguing physical properties with no
equivalent in well-known phases of matter.

A key concept for understanding quantum phase tran-
sitions is quantum criticality. Near a QCP, the system
shows a universal scaling behavior which manifests itself
not only in universal critical exponents but also in uni-
versal scaling functions. While understanding quantum
criticality in strongly correlated systems is often a chal-
lenge, both experimentally and theoretically, cold atoms
offer clean systems for a quantitative and precise study of
quantum phase transitions. Quantum criticality in cold
atoms has attracted increasing theoretical interest in the
last years [5–8].

In ultracold gases, strong correlations can be achieved
by tuning the atom-atom interactions by means of a

Feshbach resonance, or by loading the atoms into an opti-
cal lattice [9]. In the latter case, by varying the strength
of the lattice potential, it is possible to induce a quantum
phase transition between superfluid and Mott insulating
ground states in a Bose gas [10,11]. The main features
of this transition can be understood in the framework of
the Bose-Hubbard model, which describes bosons moving
in a lattice with an on-site repulsive interaction [12]. The
density-driven Mott transition belongs to the same uni-
versality class as the transition between the vacuum and
the superfluid phase in a dilute Bose gas [4,12]. When
the transition occurs at fixed density, and is driven by
a change in the interaction strength, it belongs to the
(d + 1)-dimensional XY universality class (d is the space
dimension).

We have recently studied the equation of state near the
three-dimensional density-driven Mott transition [8,13].
In this letter, we focus on the interaction-driven Mott
transition in a two-dimensional Bose gas. First, we re-
view the critical behavior at the Mott transition in the
Bose-Hubbard model, distinguishing between the generic
QCP (density-driven transition) and the quantum multi-
critical point (QMCP) where the transition occurs at fixed
density. In both cases, we write the equation of state using
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a universal scaling function and a small number of nonuni-
versal parameters whose value depends on the microscopic
parameters of the Bose-Hubbard model. We then dis-
cuss in more detail the equation of state in the vicinity
a QMCP using a nonperturbative renormalization-group
(NPRG) approach. In particular, we show that the scaling
function is similar to the one that was recently obtained
within the two-dimensional quantum O(2) model [14]. We
conclude with a discussion of the experimental observation
of quantum XY criticality in a two-dimensional Bose gas
in an optical lattice.

Critical behavior at the Mott transition. – The
d-dimensional Bose-Hubbard model [12] is defined by the
(Euclidean) action

S =

∫ β

0

dτ

{

∑

r

[

ψ∗
r
(∂τ − µ)ψr +

U

2
(ψ∗

r
ψr)

2

]

− t
∑

〈r,r′〉

(ψ∗
r
ψr

′ + c.c.)

}

, (1)

where ψr(τ) is a complex field and τ ∈ [0, β] an imaginary
time with β = 1/T the inverse temperature. {r} denotes
the N sites of the lattice which is assumed hypercubic, U
the on-site repulsion, and t the hopping amplitude between
nearest-neighbor sites 〈r, r′〉. We set � = kB = 1 and
denote by l the lattice spacing.
The zero-temperature phase diagram of the Bose-

Hubbard model, obtained from the NPRG, is shown in
fig. 1 (see footnote 1) (for d = 2). For large t/U , the
ground state is always superfluid for µ > −2dt (when
µ ≤ −2dt there are no particles in the system). For small
values of t/U , one observes a series of lobes correspond-
ing to incompressible Mott insulating phases with a com-
mensurate density (integer mean number of bosons per
site). The quantum phase transition between the super-
fluid phase and the Mott insulator belongs to two univer-
sality classes [12]. At the tips of the Mott lobes, where
the transition takes place at constant density and is inter-
action driven, the universality class is that of the (d+ 1)-
dimensional XY model with a dynamical critical exponent
z = 1. Anywhere else, the transition is driven by a density
change and is in the dilute Bose gas universality class with
a dynamical critical exponent z = 2.
To understand in more detail the thermodynamic prop-

erties of the system in the vicinity of the Mott transition,
we introduce the effective action

Γ[φ∗, φ] = − lnZ[J∗, J ] +

∫ β

0

dτ
∑

r

[J∗
r
φr + c.c.] (2)

defined as the Legendre transform of the thermody-
namic potential − lnZ[J∗, J ] (Z[J∗, J ] denotes the par-

1The phase diagram was obtained using a simple form of the
RG equations and is less precise than the one deduced from (more
complicated) functional equations [15,16]. For the same reason, the
value of the critical exponent ν ≃ 0.63 at a QMCP is not as accurate
as the one reported in ref. [15].
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Fig. 1: Zero-temperature phase diagram of the two-dimensional
Bose-Hubbard model on a square lattice showing the first three
Mott lobes, the vacuum and the superfluid phase.

tition function), where Jr is a complex external source
that couples linearly to the bosonic field ψr and φr(τ) =
δ lnZ[J∗, J ]/δJ∗

r
(τ) the superfluid order parameter. Ther-

modynamic properties of the system can be derived from
the effective potential V (n) = (βN)−1Γ[φ∗, φ] with n =
|φ|2 and φ a uniform and time-independent field. The
minimum of V (n) determines the condensate density n0

and the pressure P (µ, T ) = −V (n0) in the equilibrium
state.
The critical behavior can be obtained from the low-

energy expansion

Γ[φ∗, φ] = l−d

∫ β

0

dτ

∫

ddr
[

φ∗(ZC∂τ − VA∂
2
τ − ZAt∇

2)φ

+V (n0) + δ(n− n0) +
λ

2
(n− n0)

2 + · · ·
]

, (3)

where the ellipses denote higher-order (in derivative or
field) terms. Equation (3) is obtained by expanding the
effective potential V (n) about n0 and retaining only the
lowest-order derivative terms. We have taken the contin-
uum limit where r becomes a continuous variable. At zero
temperature, δ is nonzero in the Mott insulator and van-
ishes in the superfluid phase (where n0 > 0) so that the
transition line is given by δ ≡ δ(t, µ, U) = 0+. δ and ZC

are not independent but satisfy the relation [4,12,15]

ZC = − ∂δ

∂µ

∣

∣

∣

∣

t,U

, (4)

which follows from the invariance of the action (1) in the
semilocal U(1) transformation ψr(τ) → ψr(τ)e

iθ(τ) and
µ → µ + i∂τθ(τ) (with θ(τ) a uniform time-dependent
phase).
Away from the tips of the Mott lobes, ZC is therefore

nonzero and the dynamical critical exponent takes the
value z = 2. The second-order time derivative term in
eq. (3) is then subleading and can be ignored; the transi-
tion is in the universality class of the dilute Bose gas and
the upper critical dimension is d+c = 2 [4,12]. The simi-
larity with the vacuum-superfluid transition of the dilute
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Bose gas can be made more explicit by introducing the
effective mass m∗ of the critical fluctuations ω = q2/2m∗

at the QCP, as well as an effective scattering length a∗

characterizing the low-energy behavior of the interaction
λ between elementary excitations. In the vicinity of the
QCP and for d ≥ 2, the pressure reads [13]

P (µ, T ) = Pc + n̄cδµ

+

(

m∗

2π

)d/2

T d/2+1F (d)
DBG

(

±δµ

T
, g̃(T )

)

, (5)

where Pc and n̄c denotes the pressure and the mean den-

sity at the QCP, respectively. F (d)
DBG is a universal scaling

function characteristic of the d-dimensional dilute Bose
gas universality class. δµ = µ−µc measures the distance to
the QCP and the dimensionless interaction constant g̃(T )
is a function of m∗a∗2T . The + (−) sign in eq. (5) corre-
sponds to particle (hole) doping of the Mott insulator. The
scaling form (5) near a generic QCP has recently been ver-
ified in the three-dimensional Bose-Hubbard model, and
the nonuniversal parameters m∗ and a∗ have been com-
puted as a function of t/U and µ/U [8,13].
At the tip of a Mott lobe, where the tangent to the tran-

sition line is vertical (fig. 1), ZC vanishes and the dynami-
cal critical exponent takes the value z = 1. The QMCP is
then similar to the critical point of the (d+1)-dimensional
XY model. The lower and upper critical dimensions are
therefore d−c = 1 and d+c = 3, respectively. The zero-
temperature transition from the Mott insulator to the
superfluid phase is driven by the vanishing of the particle-
hole excitation gap, while the density is conserved. The
critical behavior as we move away from the QMCP can
be understood from the singular part of the effective po-
tential. When ZC vanishes2, the zero-temperature phase
transition is controlled by the fixed point of the (d + 1)-
dimensional XY model. There is one relevant variable
(that we denote by r) with scaling dimension 1/ν given by

the correlation-length exponent ν ≡ ν
(d+1)
XY of the (d+ 1)-

dimensional XY model. If we move away from the Mott
lobe tip in an arbitrary direction, ZC will in general not
vanish. Denoting by y its scaling dimension, the singular
part of the effective potential satisfies, when d < d+c , the
hyperscaling relation [12]

Vsing(r, ZC) = s−d−zVs(s
1/νr, syZC)

∼ |r|ν(d+z)Ṽsing

(

ZC

|r|yν
)

. (6)

The last result in (6) is obtained with s ∼ |r|−ν . Vsing

being finite in the limit ZC → 0, Ṽsing(x) must behave
as a constant in the limit x → 0. Moreover r and ZC are
presumably analytic functions of t−tc and µ−µc, and must
vanish linearly with t−tc as we approach a QMCP (tc, µc)
on a typical path (i.e. a path which is not vertical in the

2In the close vicinity of a QMCP (tc, µc), we expect ZC to vanish
on a line roughly given by µ = µc.

(t/U, µ/U)-plane3). Since y = 1 [12,15] and 1−ν
(d+1)
XY > 0

for all dimensions d + 1 ≥ 3, the argument of Ṽsing in

eq. (6) vanishes as t − tc → 0. Given that Ṽsing(x) →
const as x → 0, we conclude that ZC drops out of the
scaling relation (6) and the multicritical point looks like an
ordinary (d + 1)-dimensional XY critical point. At finite
temperature, the singular part of the effective potential
satisfies

Vsing(r, T ) ∼ |r|ν(d+z)W̃sing

(

T

|r|zν
)

, (7)

using the fact that the scaling dimension of the tempera-
ture is given by the critical dynamical exponent z.
These observations imply that the universal (critical)

behavior in the vicinity of a QMCP can be obtained from
the quantum O(2) model

S[ϕ] =

∫ β

0

dτ

∫

ddr

{

1

2
(∇ϕ)2 +

1

2c20
(∂τϕ)

2

+
r0
2
ϕ

2 +
u0

4!
(ϕ2)

2
}

, (8)

where ϕ is a 2-component real field satisfying periodic
boundary conditions ϕ(r, τ + β) = ϕ(r, τ). Note that
this model has no first-order time derivative and exhibits
Lorentz invariance at zero temperature. There is a QCP
for a critical value r0c of r0 (considering u0 fixed) separat-
ing a disordered phase (r0 > rc0) from an ordered phase
(r0 < r0c) where the O(2) symmetry is spontaneously bro-
ken. In two dimensions, the system is always disordered at
finite temperatures but exhibits a Berezinskii-Kosterlitz-
Thouless (BKT) phase transition for r < r0c. In the uni-
versal regime near the QCP the pressure reads

P (T ) = P (0) + 2
T d+1

cd
F (d)

Qu-XY

(

∆

T

)

(9)

for d−c ≤ d ≤ d+c , where c is the velocity of the critical
fluctuations at the QCP and |∆| a characteristic zero-
temperature energy scale [14]. In the disordered phase
(r0 > r0c), ∆ is equal to the excitation gap of the ϕ field.
When r0 < r0c, it is convenient to take ∆ negative such
that |∆| = −∆ is the excitation gap in the disordered
phase at the point located symmetrically with respect to

the QCP. The universal scaling function F ≡ F (2)
Qu-XY

of the two-dimensional quantum O(2) model has recently
been computed using the NPRG [14].
The pressure in the two-dimensional Bose-Hubbard

model, in the vicinity of a QMCP, is given by eq. (9)
if we identify ∆ with the one-particle excitation gap in
the Mott phase. In the following, we discuss the equation
of state for a constant chemical potential µc in the vicin-
ity of a QMCP (tc, µc). The gap ∆ = αU [(tc − t)/U ]zν

in the Mott insulator can be expressed as a function of

3For a vertical path (t = tc), r does not change sign and must
therefore vanish as (µ− µc)2 [12].

16002-p3
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the distance tc − t to the QCP, where α is a nonuniver-
sal dimensionless number which depends on the Mott lobe
considered.
To compute the effective action Γ[φ∗, φ] and the pressure

P (µ, T ) in the Bose-Hubbard model, we use the NPRG.
One considers a scale-dependent effective action Γk[φ

∗, φ]
which includes fluctuations with momentum |q| � k and
coincides with the effective action (2) when the momen-
tum scale k vanishes. In practice, this is achieved by
adding to the action (1) a “regulator” term ∆Sk which
suppresses fluctuations with momentum |q| � k. For k
equal to a microscopic scale Λ (of the order of the inverse
lattice spacing), the action S+∆SΛ describes a system of
decoupled sites (vanishing hopping amplitude) and is ex-
actly solvable. To obtain the effective action Γ ≡ Γk=0 of
the Bose-Hubbard model from ΓΛ, we use a RG equation
∂kΓk. We refer to refs. [15,16] for a detailed discussion of
this method and the approximations used to solve the RG
equation.
It is useful, in particular regarding experiments in cold

atoms, to determine the domain of validity of the scal-
ing form (9) in the two-dimensional Bose-Hubbard model.
This can be done by looking at the RG flow of the cou-
pling constant λk (see footnote 4). At the QMCP, we
can clearly distinguish two regimes: i) a (high-energy)
nonuniversal regime k � kG where lattice effects are im-
portant and the dimensionless coupling constant λ̃k varies
strongly with k, ii) a universal (critical) regime k ≪ kG
where λ̃k is close to its fixed-point value λ̃∗. As shown by
the numerical solution of the flow equations, the crossover
Ginzburg scale kG is of the order of the inverse lattice
spacing l−1 (the Ginzburg length k−1

G is typically equal
to a few lattice spacings l)5. Away from the QMCP, the
energy scale |∆| and the temperature define two new mo-
mentum scales, k∆ = |∆|/c and kT = T/c, where c is the
velocity of the critical fluctuations. k−1

∆ is the correlation
length in the zero-temperature Mott insulator, and corre-
sponds to the Josephson length in the superfluid phase.
Universality requires k∆, kT ≪ kG, i.e. |∆|, T ≪ ckG.
If we approximate c by its value in the strong-coupling
random-phase approximation (RPA), we finally obtain

|∆|, T ≪ kGl
√

tcU(n̄2
c + n̄c)

1/4, (10)

where n̄c is the mean boson density at the QMCP (and in
the nearby Mott insulator). The crossover energy scale be-
low which universality is expected is therefore determined
by

√
tcU . This should be compared with the crossover

scale ∼ tc which controls the universal behavior in the
vicinity of a generic QCP [13].

Equation of state near a multicritical point. –

The phase diagram near the QMCP (tc, µc) of the first
Mott lobe is shown in fig. 2. At finite temperatures, we

4In the low-energy limit, the scale-dependent effective action
Γk[φ

∗, φ] can be expanded as in eq. (3) but with k-dependent pa-
rameters (n0,k, δk, λk, etc.) [15].

5See, for instance, fig. 8 in ref. [15].
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Fig. 2: (Color online) Phase diagram near the multicritical
point (tc, µc) of the first Mott lobe for a constant chemi-
cal potential µ = µc (QD: quantum disordered, QC: quan-
tum critical, RC: renormalized classical). The (blue) solid
line shows the BKT transition temperature obtained from
TBKT = 1.59 ρs(T = 0); the (red) crosses correspond to
T/U = 1.28[(t−tc)/U ]ν (with ν = 0.63). The dashed crossover
lines are obtained from the criterion |∆| = T .

can distinguish three characteristic regimes by comparing
|∆| and T [4]: i) a quantum disordered regime (∆ ≫ T ),
a quantum critical regime (|∆| ≪ T ), and a renormalized
classical regime (−∆ ≫ T ). In the renormalized classical
regime, there is a BKT phase transition between a high-
temperature normal phase and a low-temperature super-
fluid phase with algebraic order. To estimate TBKT, we
use TBKT = Cρs where ρs = ρs(T = 0) is the zero-
temperature superfluid stiffness (obtained in the NPRG
approach) and C a universal number close to π/2 (see foot-
note 6) (TBKT in fig. 2 was obtained with C = 1.59 [14]).
Near the QMCP the transition temperature is well ap-
proximated by TBKT/U ≃ 1.28[(t− tc)/U ]ν , in very good
agreement with the quantum Monte Carlo (QMC) re-
sult TBKT/U ≃ 1.29[(t − tc)/U ]ν [18]7. The critical
regime [eq. (10)] is roughly defined by T/U � 0.07 and
|t− tc|/U � 0.004 if we take kGl ∼ 0.25 (see below).

Figure 3 shows the temperature dependence of the pres-
sure at the QMCP’s of the first three Mott lobes. The cor-
responding values of the velocity c and the parameter α
are given in table 1. We see that (c2/2)[P (T )−P (0)] varies
as T 3 at low temperatures with a prefactor F(0) ≃ 0.107
which is independent of the multicritical point consid-
ered in agreement with the expected universality. The
crossover temperature below which universality holds is of
the order of 0.07U and agrees with the estimate (10) if
kGl ∼ 0.25.

Figure 4 shows the full scaling function F(x) as obtained
from the first three Mott lobes. Again, the collapse of the

6The BKT transition temperature is related to the jump of
the stiffness by TBKT = (π/2)ρs(T

−

BKT
) [17]. The fact fact C =

TBKT/ρs ≃ π/2 (with ρs ≡ ρs(T = 0)) is due to ρs(T
−

BKT
) differing

only slightly from ρs [14].
7This expression is deduced from TBKT/t = 0.49(U/tc − U/t)ν

with tc/U = 0.05974 and ν = 0.6715 [18].
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Fig. 3: (Color online) Pressure vs. temperature at the multi-
critical points of the first three Mott lobes. The dashed curve
corresponds to y = 0.107 x3. Inset: log-log plot showing the
T 3 dependence of the pressure at low temperatures.
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Fig. 4: (Color online) Universal scaling function F obtained
from the pressure near the multicritical points of the first three
Mott lobes. The (black) solid curve shows the result obtained
from the two-dimensional quantum O(2) model [14].

Table 1: Velocity c and parameter α for the first three Mott
lobes. The QMC data is taken from ref. [18] and the velocity
in the strong-coupling RPA is given by c =

√
tcU(n̄2

c + n̄c)
1/4.

Mott lobe n̄c = 1 n̄c = 2 n̄c = 3

c/ltc NPRG 4.88 8.53 12.14

c/ltc QMC 4.8± 0.2

c/ltc RPA 5.74 9.85 13.89

α 2.238 3.374 4.222

data on a single curve is a convincing proof of universal-
ity. We do not obtain a perfect agreement with the scaling
function derived from the quantum O(2) model [14], most
likely for technical reasons related to the NPRG approach
to the Bose-Hubbard model. The initial condition of the
flow (namely the (local) limit of decoupled sites) makes it
difficult to implement a RG approach which explicitly sat-
isfies the emerging Lorentz invariance at the multicritical

points. Even if the latter is very well satisfied by the RG
flow [15] a precise determination of F , yielding a better
agreement with the result of the quantum O(2) model (in
particular for the value of F(0)), appears difficult. Nev-
ertheless our calculations reproduce the nonmonotonous
behavior of the scaling function in the quantum critical
regime with a peak in F(x) located near x = 0; they
confirm that the QMCP’s look like ordinary quantum XY
critical points.

Experimental observation. – Although cold atomic
gases are inhomogeneous and of finite size due to the har-
monic confining potential, from a local density approxi-
mation it is possible to deduce the pressure P (µ, T ) of the
infinite homogeneous gas (with uniform density) from the
in situ density distribution n(r) [19,20]. This technique
has recently been used to obtain the equation of state
of a two-dimensional Bose gas in an optical lattice near
the vacuum-superfluid transition [21]. The location of the
QCP, as well as the critical exponents z = 2 and ν = 1/2,
were determined by writing the equation of state measured
at various temperatures in a scaling form. The experi-
mental results are in good agreement with a theoretical
analysis of the two-dimensional Bose-Hubbard model [22].
A similar experimental approach can be used to study

the equation of state of a two-dimensional Bose gas in
an optical lattice near the Mott transition. The most
direct evidence for quantum XY criticality in the vicin-
ity of a multicritical point would come from a T 3 depen-
dence of the pressure at low temperatures (at the generic
Mott transition, the pressure varies quadratically with T ).
Because of three-body collisions, it is difficult to have a
stable gas with more than two atoms per site in the Mott
insulator [23]. It is thus possible to measure the tempera-
ture dependence of the pressure at two different QMCP’s
(corresponding to the first two lobes). If we assume that
the theoretical values of the velocity c are accurate (as sug-
gested by the agreement between NPRG and QMC for the
first Mott lobe), we can then deduce the value of the uni-
versal number F(0) and verify the prediction of the NPRG
approach F(0) ≃ 0.147 obtained from the quantum O(2)
model [14].
A more ambitious goal consists in measuring the equa-

tion of state as a function of t for a value of the chemical
potential corresponding to a QMCP. A collapse of the data
in agreement with the scaling form (9) would not only lo-
cate the position (tc, µc) of the QMCP but would also yield
an estimate of the critical exponents ν and z as well as the
full scaling function F(x).
One of the experimental difficulties in observing

quantum XY criticality is that it requires to measure the
pressure (i.e. the in situ density distribution n(r)) at suf-
ficiently low temperatures T � 0.07U (∼ tc for the first
Mott lobes).

Conclusion. – We have shown that the pres-
sure P (µ, T ) of a two-dimensional Bose gas near the
interaction-driven Mott transition takes a universal form,
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with a universal scaling function F ≡ F (2)
Qu-XY character-

istic of the quantum XY model universality class in two
space dimensions (eq. (9)). The nonuniversal parameters
entering the equation of state, namely the velocity of the
critical fluctuations and the parameter α relating the Mott
gap ∆ to the distance tc − t to the QMCP, have been
computed for the first three Mott lobes (table 1). Recent
experiments have shown that it is now possible to mea-
sure the equation of state of a Bose gas in an optical lat-
tice [21]. This opens up the possibility of a detailed study
of the quantum XY model universality class in two dimen-
sions, and in particular the determination of the universal

scaling function F (2)
Qu-XY.

Recent theoretical works have focused on the amplitude
(“Higgs”) mode which is expected in the vicinity of the
QMCPs as a result of Lorentz invariance (or XY symme-
try) [24–28]. The confinement of the gas by the harmonic
trap suppresses the Higgs resonance which is replaced by a
broad maximum in the spectral function. It is nevertheless
possible to (indirectly) determine the energy of the Higgs
mode from the onset of a strong response [25] as done in
a recent experiment [29]. Measuring the equation of state
would provide us with complementary information as well
as a more direct proof of the XY symmetry (or Lorentz
invariance) at a QMCP between the superfluid phase and
the Mott insulator.
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