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Thermodynamics in the vicinity of a relativistic quantum critical point in 2 + 1 dimensions
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2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France

(Received 26 March 2013; published 15 July 2013)

We study the thermodynamics of the relativistic quantum O(N ) model in two space dimensions. In the vicinity of
the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P (T ) = P (0) +
N (T 3/c2)FN (�/T ), where c is the velocity of the excitations at the QCP and |�| a characteristic zero-temperature
energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we
compute the universal scaling function FN . For small values of N (N � 10) we find that FN (x) is nonmonotonic
in the quantum critical regime (|x| � 1) with a maximum near x = 0. The large-N approach—if properly
interpreted—is a good approximation both in the renormalized classical (x � −1) and quantum disordered
(x � 1) regimes, but fails to describe the nonmonotonic behavior ofFN in the quantum critical regime. We discuss
the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum
nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless
transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio
TBKT/ρs(0) is very close to π/2, implying that the stiffness ρs(T

−
BKT) at the transition is only slightly reduced

with respect to the zero-temperature stiffness ρs(0). Finally, we briefly discuss the experimental determination of
the universal function F2 from the pressure of a Bose gas in an optical lattice near the superfluid–Mott-insulator
transition.
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I. INTRODUCTION

Many zero-temperature critical points observed in quantum
many-body systems are described by a relativistic effective
field theory [1,2]. Bosonic cold atomic gases constitute a very
clean experimental realization of such quantum critical points
(QCPs): A Bose gas in an optical lattice undergoes a quantum
phase transition between a Mott insulator and a superfluid
state [3–6]. When the transition occurs at fixed density, it is
described by a relativistic quantum O(2) model [7,8].

Recent works have focused on the excitation spectrum
of the relativistic quantum O(N ) model in the vicinity of
the QCP and in particular on the spectral function of the
amplitude (“Higgs”) mode in the broken-symmetry phase
[2,9–12]. Signatures of the amplitude mode have recently been
observed in a two-dimensional superfluid near the superfluid–
Mott-insulator transition [13].

In this paper, we study the thermodynamics of the rela-
tivistic quantum O(N ) model in two space dimensions. We
extend previous results [1,14] obtained to leading order in the
large-N limit by computing the full scaling function F∞(x)
determining the temperature dependence of the pressure
near the QCP. Using a nonperturbative renormalization-group
(NPRG) approach [15–17], we then calculate FN (x) for finite
values of N , including N = 2 and N = 3.

We start from the action

S[ϕ] =
∫

dx

{
1

2
(∇ϕ)2 + 1

2c2
0

(∂τϕ)2 + r0

2
ϕ2 + u0

4!N
(ϕ2)2

}
,

(1)

where we use the shorthand notation

x = (r,τ ),
∫

dx =
∫ β

0
dτ

∫
d2r. (2)

ϕ(x) is an N -component real field and τ ∈ [0,β] an imaginary
time (β = 1/T and we set h̄ = kB = 1). r0 and u0 are
temperature-independent coupling constants and c0 is the
(bare) velocity of the ϕ field. The factor 1/N in Eq. (1) is
introduced to obtain a meaningful limit N → ∞ (with u0

fixed). The model is regularized by an ultraviolet cutoff �. In
order to maintain the Lorentz invariance of the action (1) at
zero temperature, it is natural to implement a cutoff on both
momenta and frequencies but we will also sometimes use a
cutoff acting only on momenta.

In two space dimensions, the phase diagram of the rela-
tivistic quantum O(N ) model is well known (Fig. 1) [1]. At
zero temperature, there is a quantum phase transition between
a disordered phase (r0 > r0c) and an ordered phase (r0 < r0c)
where the O(N ) symmetry of the action (1) is spontaneously
broken (u0 and c0 are considered as fixed parameters). The
QCP at r0 = r0c is in the universality class of the three-
dimensional classical O(N ) model with a dynamical critical
exponent z = 1 (this value follows from Lorentz invariance
at zero temperature); the phase transition is governed by
the three-dimensional Wilson-Fisher fixed point. At finite
temperatures, the system is always disordered for N � 2, in
agreement with the Mermin-Wagner theorem, but it is possible
to distinguish three regimes in the vicinity of the QCP: a
renormalized classical regime, a quantum critical regime, and
a quantum disordered regime [1,18]. For N = 2 and r0 < r0c,
there is a finite-temperature Berezinskii-Kosterlitz-Thouless
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FIG. 1. Phase diagram of the relativistic O(N ) model in two
space dimensions for N � 3 [Eq. (1)]. The thick line shows the
zero-temperature ordered phase with long-range order (LRO), while
the dashed lines are crossover lines between the renormalized
classical (RC), quantum critical (QC), and quantum disordered (QD)
regimes. The dotted line shows the limit of the high-T region where
the physics is not controlled by the QCP anymore. (For N = 2, there is
a finite-temperature BKT transition line for r0 � r0c, which terminates
at T = 0 for r0 = r0c.)

(BKT) phase transition [19–21] and the system exhibits
algebraic order at low temperatures. The BKT transition
temperature line TBKT terminates at the QCP r0 = r0c.

Below the upper critical dimension d+
c = 3 (d+

c + z = 4)
of the quantum phase transition, we expect the hyperscaling
hypothesis to hold. In two dimensions, this allows us to write
the pressure in the critical regime as [22]

P (T ) = P (0) + N
T 3

c2
FN

(
�

T

)
, (3)

where FN is a universal scaling function, c the velocity of
the critical fluctuations at the QCP [23], and |�| ≡ |�(r0)| a
characteristic energy scale at zero temperature. When r0 > r0c,
the system is disordered and we choose � to be equal to the
excitation gap m0 ∝ (r0 − r0c)zν of the ϕ field (ν denotes the
correlation-length exponent at the QCP)—not to be confused
with the amplitude (“Higgs”) mode gap. When r0 < r0c it is
convenient to take � negative such that −� is the excitation
gap in the disordered phase at the point located symmetrically
with respect to the QCP; i.e., |�(r0)| = m0(2r0c − r0) [2]. −�

is then proportional to the stiffness ρs , the ratio |�|/ρs being
universal. With these definitions, � varies from negative to
positive values as we go across the QCP coming from the
ordered phase. The two crossover lines shown in Fig. 1 are
roughly defined by |�| ∼ T . We stress that the scaling function
FN is independent of all microscopic parameters of the model
such as r0, u0, or c0. The latter enter the temperature variation
of the pressure [Eq. (3)] only indirectly via the values of the
renormalized velocity c and the energy scale �.

In the critical regime near the QCP, all thermodynamic
quantities can be written in a scaling form. In addition to
FN , we will compute the universal scaling function FN which
determines the excitation gap

m(T ) = T FN

(
�

T

)
(4)

at finite temperatures. As we shall see, the knowledge of FN

is necessary to obtain FN in the large-N limit.
The outline of the paper is as follows. In Sec. II, we

compute the universal scaling functions FN and FN to leading
order in a 1/N expansion. We then use a NPRG approach to
calculate FN and FN for any value N � 2 (Sec. III). The main

results are presented in Sec. III B. Section III C is devoted
to a detailed analysis of the RG flows in the renormalized
classical, quantum disordered, and quantum critical regimes
for N � 3. In the renormalized classical regime, where the
physics is dominated by the N − 1 Goldstone modes of the
zero-temperature broken-symmetry phase, we show that
the NPRG flow equations yield the one-loop RG equations
of the quantum O(N ) nonlinear σ model (NLσM) [18]. The
BKT transition temperature in the quantum O(2) model is
discussed in Sec. III E. The implication of our results for cold
atomic gases are briefly discussed in the Conclusion.

II. LARGE-N LIMIT

In this section, we use a cutoff � acting only on momenta;
i.e., |q| � �. We do not distinguish between the bare velocity
c0 and the renormalized one c since they coincide in the large-
N limit.

Following the standard method in the large-N limit (see,
e.g., Refs. [24,25]), we express the partition function as

Z =
∫

D[ϕ,ρ,λ] exp

{
−

∫
dx

[
1

2
(∇ϕ)2 + 1

2c2
(∂τϕ)2

+ r0

2
ρ + u0

4!N
ρ2 + i

λ

2
(ϕ2 − ρ)

]}
. (5)

It can be easily verified that by integrating out λ and then
ρ, one recovers the original action S[ϕ]. If, instead, we first
integrate out ρ, we obtain

Z =
∫

D[ϕ,λ] exp

{
−

∫
dx

[
1

2
(∇ϕ)2 + 1

2c2
(∂τϕ)2

+ i
λ

2
ϕ2

]
+ 3N

2u0

∫
dx (iλ − r0)2

}
. (6)

We then split the ϕ field into a field σ and a (N − 1)-component
field π . The integration over the π field gives∫

D[π] exp

{
−

∫
dx

[
1

2
(∇π )2 + 1

2c2
(∂τπ)2 + i

λ

2
π2

]}
= (det g)(N−1)/2, (7)

where

g−1(x,x ′) = [ − ∇2 − c−2∂τ
2 + iλ(x)

]
δ(x − x ′) (8)

is the inverse propagator of the πi field in the fluctuating λ

field. We thus obtain the action

S[σ,λ] = 1

2

∫
dx[(∇σ )2 + c−2(∂τσ )2 + iλσ 2]

− 3N

2u0

∫
dx (iλ − r0)2 + N − 1

2
Tr ln g−1. (9)

In the limit N → ∞, the action becomes proportional to N

(this is easily seen by rescaling the σ field, σ → √
Nσ ) and the

saddle-point approximation becomes exact. For uniform and
time-independent fields σ (x) = σ and λ(x) = λ, the saddle-
point action is given by

1

βV
S[σ,λ] = i

2
λσ 2 − 3N

2u0
(iλ − r0)2 + N

2βV
Tr ln g−1

(10)
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(we use N − 1 � N for large N ), with g−1(q) = q2 +
ω2

n/c
2 + iλ in Fourier space. q = (q,iωn), ωn = 2πT n (n

integer) is a bosonic Matsubara frequency, and V denotes the
volume of the system. From (10), we deduce the saddle-point
equations

σm2 = 0, σ 2 = 6N

u0

(
m2

c2
− r0

)
− N

∫
q

g(q), (11)

where we use the notation∫
q

= 1

β

∑
ωn

∫
q

= 1

β

∑
ωn

∫
d2q

(2π )2
(12)

and m2 = iλc2 (iλ is real at the saddle point). These equations
show that the component σ of the ϕ field which was singled
out plays the role of an order parameter. In the ordered
phase, σ is nonzero and m = 0. The propagator g(q) =
1/(q2 + ω2

n/c
2) is gapless, thus identifying the πi fields as the

N − 1 Goldstone modes associated with the spontaneously
broken O(N ) symmetry. In the disordered phase, σ vanishes
and m determines the gap (or “mass”) of the ϕ field as well as
the correlation length ξ = c/m.

A. Zero temperature

The critical value r0c corresponding to the QCP separating
the ordered and disordered phases is obtained by setting σ =
m = 0 in Eqs. (11),

r0c = −u0

6

∫
q

∫
ω

c2

ω2 + c2q2
= −u0c�

24π
, (13)

where
∫
ω

= ∫ ∞
−∞

dω
2π

.
In the disordered phase r0 � r0c, σ = 0 and the mass m0 =

m(T = 0) is determined by Eqs. (11) and (13),

6

u0

(
m2

c2
− r0 + r0c

)

− c2
∫

q

∫
ω

(
1

ω2 + c2q2 + m2
0

− 1

ω2 + c2q2

)
= 0, (14)

which gives

6m2
0

u0c2
+ m0

4π
= 6

u0
(r0 − r0c). (15)

By comparing the two terms on the left-hand side of this
equation, we obtain a characteristic momentum scale, the
Ginzburg scale kG ∼ cu0/24π , which signals the onset of
critical fluctuations [26]. In the critical regime, m0 � ckG,
we obtain

m0 = 24π

u0
(r0 − r0c), (16)

which gives zν = 1, i.e., a correlation-length exponent ν = 1,
since the dynamical critical exponent z = 1. In the noncritical
regime m0 
 ckG, m0 ∼ (r0 − r0c)1/2 and we recover the
classical value ν = 1/2. The anomalous dimension η vanishes
to leading order in the large-N limit.

In the ordered phase r0 � r0c, m0 vanishes and σ is finite,

σ 2 = −6N
r0

u0
− N

∫
q

∫
ω

c2

ω2 + c2q2

= −6N

u0
(r0 − r0c). (17)

The stiffness is equal to ρs = σ 2 [27].

B. Finite temperatures

At finite temperatures, the system is always disordered (σ =
0), in agreement with the Mermin-Wagner theorem, and the
mass m is obtained from the saddle-point equation

0 = 6

u0

(
m2

c2
− r0

)
−

∫
q

c2

ω2
n + c2q2 + m2

= 6

u0

(
m2

c2
− r0

)
− T

2π
ln

(
sinh c�

2T

sinh m
2T

)

= 6

u0
(r0c − r0) + T

2π
ln

(
2 sinh

m

2T

)
+ 6m2

u0c2
. (18)

In the critical regime the last term can be neglected and we
obtain

m = 2T asinh

[
1

2
exp

(
�

2T

)]
, (19)

where we have introduced the characteristic energy scale |�|
defined by

� = 24π

u0
(r0 − r0c). (20)

� corresponds to the T = 0 gap m0 on the disordered side r0 >

r0c of the QCP, and to −4πρs/N on the ordered side r0 < r0c

with ρs the zero-temperature stiffness (see the discussion in the
Introduction). The critical regime is defined by T ,|�| � ckG.

We can rewrite Eq. (19) as

m

T
= F∞

(
�

T

)
, (21)

with the universal scaling function

F∞(x) = 2 asinh
(

1
2ex/2

)
. (22)

F∞(x) satisfies

F∞(x) =
⎧⎨
⎩

ex/2 if x → −∞,

2 asinh(1/2) if x = 0,

x if x → ∞,

(23)

with 2 asinh(1/2) � 0.962 424. The three cases in Eq. (23)
correspond to the renormalized classical (m � T e−|�|/2T ),
quantum critical [m � 2 asinh(1/2)T ], and quantum disor-
dered (m � �) regimes, respectively (see Fig. 1).

C. Pressure

In the large-N limit, the pressure P = −S[σ,λ]/βV is
obtained from the saddle-point value of the action,

P

N
= −m2σ 2

2Nc2
+ 3

2u0

(
r0 − m2

c2

)2

− 1

2βV
Tr ln g−1. (24)
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Using the results of Appendix A for Tr ln g−1, in the critical
regime we can write the pressure in the scaling form (3) with
the universal scaling function

F∞(x) = 1

2π

[
x3

12
�(x) − x

4
F∞(x)2 + 1

6
F∞(x)3

+F∞(x)Li2(e−F∞(x)) + Li3(e−F∞(x))

]
. (25)

Lis(z) is a polylogarithm,

Lis(z) =
∞∑

k=1

zk

ks
, (z ∈ C, |z| < 1), (26)

and �(x) denotes the step function.
From the definition of F∞(x), we obtain the limiting cases

F∞(x) =

⎧⎪⎨
⎪⎩

ζ (3)
2π

if x → −∞,
2ζ (3)

5π
if x = 0,

0 if x → ∞,

(27)

where ζ (z) is the Riemann zeta function: ζ (3)/2π � 0.191 313
and 2ζ (3)/5π � 0.153 051. To obtain limx→−∞ F∞(x) we use
F∞(x) → ex/2 for x → −∞ and Li3(1) = ζ (3). The universal
number F∞(0) is obtained noting that F∞(0) = 2 ln τ , with
τ = (1 + √

5)/2 = 2 − τ−2 the golden mean, and using [28]

Li2(2 − τ ) = π2

15
− 1

4
ln2(2 − τ ),

Li3(2 − τ ) = 4

5
ζ (3) + π2

15
ln(2 − τ ) − 1

12
ln3(2 − τ ).

(28)

It should be noted that the scaling function F∞(x) as well
as F∞(0) agree with results obtained from the NLσM in the
large-N limit [1,14,28]. This follows from the fact that the
linear and nonlinear O(N ) models are in the same universality
class and therefore exhibit the same critical physics.

III. NPRG APPROACH

The strategy of the NPRG approach is to build a family of
theories indexed by a momentum scale k such that fluctuations
are smoothly taken into account as k is lowered from the
microscopic scale � down to 0 [15–17]. This is achieved by
adding to the action (1) the infrared regulator

�Sk[ϕ] = 1

2

∑
q,i

ϕi(−q)Rk(q)ϕi(q), (29)

so that the partition function

Zk[J] =
∫

D[ϕ] e−S[ϕ]−�Sk [ϕ]+∫
dx

∑
i Jiϕi (30)

becomes k dependent. The k-dependent effective action

�k[φ] = − ln Zk[J] +
∫

dx
∑

i

Jiφi − �Sk[φ] (31)

is defined as a modified Legendre transform of − ln Zk[J]
which includes the subtraction of �Sk[φ]. Here φ(x) = 〈ϕ(x)〉
is the order parameter (in the presence of the external source).
The initial condition of the flow is specified by the microscopic
scale k = � where we assume that the fluctuations are

completely frozen by the �Sk term, so that ��[φ] = S[φ].
The effective action of the original model (1) is given by �k=0

provided that Rk=0 vanishes. For a generic value of k, the
cutoff function Rk(q) suppresses fluctuations with momentum
|q| � k or frequency |ωn| � ckk but leaves unaffected those
with |q|,|ωn|/ck � k [here ck denotes the (renormalized)
velocity of the ϕ field]. The variation of the effective action
with k is given by Wetterich’s equation [29]

∂t�k[φ] = 1
2 Tr

{
∂tRk

(
�

(2)
k [φ] + Rk

)−1}
, (32)

where t = ln(k/�). �
(2)
k [φ] denotes the second-order func-

tional derivative of �k[φ]. In Fourier space, the trace involves
a sum over momenta and Matsubara frequencies as well as the
internal index of the φ field. We use a regulator function Rk(q)
which acts both on momenta and frequencies,

Rk(q) = ZA,k

(
q2 + ω2

n

c2
k

)
r

(
q2 + ω2

n

/
c2
k

k2

)
, (33)

where r(Y ) = 1/(eY − 1). The k-dependent constant ZA,k is
defined below [Eq. (36)].

When φ is constant, i.e., uniform and time independent, the
effective action coincides with the effective potential,

Uk(ρ) = 1

βV
�k[φ]

∣∣∣∣
φ const

. (34)

Because of the O(N ) symmetry of the effective action �k ,
the effective potential Uk(ρ) must be a function of the O(N )
invariant ρ = φ2/2. The pressure is then simply defined by

P (T ) = −Uk=0(ρ0), (35)

where ρ0,k denotes the position of the minimum of Uk(ρ) and
ρ0 = limk→0 ρ0,k .

A. Approximate solution of the flow equation

Because of the regulator term �Sk , the vertices
�

(n)
k,i1···in(q1, · · · ,qn) are smooth functions of momenta and

frequencies and can be expanded in powers of q2
i /k2 and

ω2
ni
/c2

kk
2. Thus if we are interested only in the long-distance

(critical) physics, we can use a derivative expansion of the
effective action [15,16]. In the following, we consider the
ansatz

�k[φ] =
∫

dx

{
ZA,k

2
(∇φ)2 + VA,k

2
(∂τφ)2 + Uk(ρ)

}
, (36)

which is often referred to as the LPA′. It differs from the
local potential approximation (LPA) by the introduction of
two field renormalization constants ZA,k and VA,k (ZA,� = 1
and VA,� = c−2

0 ). It is the minimal ansatz beyond the LPA
which includes a finite anomalous dimension η at the QCP
(see below). Moreover the LPA equation for the potential, and
therefore the analog equation in the LPA′, are exact in the
large-N limit [30]. To further simplify the analysis, we expand
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Uk(ρ) about the position ρ0,k of its minimum,

Uk(ρ) =
{

Uk(ρ0,k) + λk

2 (ρ − ρ0,k)2 if ρ0,k > 0,

Uk(ρ0,k) + δkρ + λk

2 ρ2 if ρ0,k = 0.
(37)

Although the RG equations can also be solved for the full
effective potential, the determination of the singular part
of the pressure turns out to be extremely difficult in that
case [31].

The LPA is known to be very accurate to obtain thermody-
namic quantities. It has been used to compute the pressure in
the three-dimensional quantum ϕ4 theory with Ising symmetry
(i.e., N = 1) [32,33]. The results compare very well with
those of the Blaizot-Méndez-Wschebor approach (BMW)—an
elaborated NPRG scheme which preserves the full momentum
and frequency dependence of the propagator [34–36]. There
are also strong indications that the LPA (or the LPA′) is a good
approximation even when it is supplemented by a truncation
of the effective potential [Eq. (37)] [37]. As will be shown
below, the truncated LPA′ remains accurate—and nearly exact
in the renormalized classical regime—in the limit N → ∞
[30,38]. Furthermore, it has also been used to determine the
phase diagram of the Bose-Hubbard model in two and three
dimensions [8,39,40]: Although a truncation of the effective
potential leads to a loss of accuracy, the results remain within
10 percent of the exact ones obtained by quantum Monte Carlo
simulation [41,42].

The derivation of the flow equation for Uk(ρ), ZA,k , and
VA,k is standard [15,16] (the only difference with the classical
O(N ) model comes from the finite size β in the imaginary-time
direction [43,44]). The effective potential satisfies the flow
equation

∂tUk(ρ) = 1

2

∫
q

∂tRk(q)[Gk,l(q; ρ) + (N − 1)Gk,t(q; ρ)],

(38)

where

G−1
k,l (q; ρ) = ZA,kq2 + VA,kω

2
n + U ′

k(ρ) + 2ρU ′′
k (ρ) + Rk(q),

G−1
k,t (q; ρ) = ZA,kq2 + VA,kω

2
n + U ′

k(ρ) + Rk(q) (39)

determine the longitudinal and transverse parts of the propa-
gator Gk = (�(2)

k + Rk)−1 in a constant field φ,

Gk,ij (q; φ) = φiφj

2ρ
Gk,l(q; ρ) +

(
δi,j − φiφj

2ρ

)
Gk,t(q; ρ).

(40)

The contribution of Gk,t to ∂tUk comes with a factor N −
1 corresponding to the number of transverse modes. When
ρ0,k > 0, U ′

k(ρ0,k) vanishes and these modes become gapless
for Rk(q) → 0 (Goldstone modes). The stiffness is given by
ρs,k = 2ZA,kρ0,k [27]. In the disordered phase, the minimum
of Uk(ρ) is located at ρ0,k = 0 so that all modes exhibit a
gap mk = √

U ′
k(0)/VA,k [for Rk(q) → 0] corresponding to a

finite correlation length ξk = ck/mk where ck = √
ZA,k/VA,k

(c� = c0) is the renormalized velocity (see Sec. III C1 for
a further discussion of the velocity). The actual gap m and
correlation length ξ in the disordered phase are obtained for
k = 0.

The flow equations for ZA,k and VA,k are obtained from the
flow equation (32) by noting that

ZA,k = lim
q→0

∂

∂q2
�

(2)
k,t (q; ρ0,k),

VA,k = lim
q→0

∂

∂ω2
n

�
(2)
k,t (q; ρ0,k).

(41)

At the zero-temperature QCP, ZA,k ∼ k−η and VA,k ∼
k−η−2(z−1) [45], which allows us to deduce both the anomalous
dimension η and the dynamical critical exponent z. The latter
is equal to one due to the Lorentz invariance of the action (1) at
T = 0. The exponent ν can be obtained from the divergence of
the correlation length ξ ∼ (r0 − r0c)−ν in the disordered phase
as the QCP is approached, or more directly from the escape
rate from the fixed point when the system is nearly critical.

The RG equations are given by [46]

∂tρ0,k = −3

2
Ik,l − N − 1

2
Ik,t if ρ0,k > 0,

∂t δk = λk

2
(N + 2)Ik,l if ρ0,k = 0,

∂tλk = −λ2
k[9Jk,ll(0) + (N − 1)Jk,tt(0)],

∂tZA,k = −2λ2
kρ0,k

∂

∂p2
[Jk,tl(p) + Jk,lt(p)]

∣∣∣∣
p=0

,

∂tVA,k = −2λ2
kρ0,k

∂

∂ω2
n

[Jk,tl(p) + Jk,lt(p)]

∣∣∣∣
p=0

,

(42)

while the equation for the thermodynamic potential (per unit
volume) Uk(ρ0,k) is directly obtained from (38). We have
introduced the threshold functions

Ik,α =
∫

q

∂̃tGk,α(q; ρ0,k),

Jk,αβ(p) =
∫

q

[∂̃tGk,α(q; ρ0,k)]Gk,β(p + q; ρ0,k),
(43)

with α,β = l,t. The operator ∂̃t = (∂tRk)∂Rk
acts only on

the t dependence of the cutoff function Rk . The propaga-
tors Gk,l(p; ρ0,k) and Gk,t(p; ρ0,k) are given by (39) with
U ′

k(ρ0,k) = δk and U ′′
k (ρ0,k) = λk .

The flow equations are solved numerically [47]. Results
related to the thermodynamics are discussed in the following
section.

B. Universal scaling functions

We first solve the equations at T = 0 to determine r0c

and obtain the critical exponents ν and η as well as the
characteristic energy scale � ≡ �(r0). For N = 3 we find
ν � 0.699 and η = 0.0507, to be compared with the best
estimates for the three-dimensional O(3) model obtained
from resummed perturbative calculations [48] (ν � 0.7060,
η = 0.0333), Monte Carlo simulations [49] (ν � 0.7112,
η = 0.0375), or the NPRG in the BMW approximation [36]
(ν � 0.715, η = 0.040). For N = 2, our results ν � 0.613 and
η = 0.0582 should be compared with the critical exponents
of the three-dimensional O(2) model: resummed perturbative
calculations [48] (ν � 0.6700, η = 0.0334), Monte Carlo
simulations [50] (ν � 0.6717, η = 0.0381), NPRG-BMW
[36] (ν � 0.674, η = 0.041). Note that the rather poor estimate
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FIG. 2. (Color online) Universal scaling function F3(x) [Eq. (4)]
computed for various values of the microscopic parameters (� = 100
and c0 = 1).

of η is a well-known limitation of the LPA′; a much better
result can be obtained by considering the full derivative
expansion to order O(∂2) [37]. At finite temperatures, the
two-dimensional relativistic O(2) model exhibits a BKT
phase transition. Although, stricto sensu, the NPRG does not
capture this transition, most universal properties of the latter
are nevertheless correctly reproduced [51,52]. In particular,
recent work on the two-dimensional Bose gas has shown
that the thermodynamics can be accurately computed using
the NPRG [53]. The BKT transition is further discussed in
Sec. III E.

Once the QCP is located and the energy scale � determined
as a function of r0 − r0c, we compute the gap m(T ) and the
pressure P (T ), and deduce the universal scaling functions
FN (x) andFN (x) [Eqs. (3) and (4)]. To ensure that we are in the
universal (critical) regime, we solve the NPRG equations for
various values of the ultraviolet cutoff �, interaction strength
u0, or temperature T , and verify that the final results for FN

and FN remain unchanged (Figs. 2 and 3). Only at sufficiently
low temperatures and close enough to the QCP (T ,|�| � ckG)
do the universal scaling forms (3) and (4) hold.

Figure 4 shows the universal scaling functions FN and FN

for various values of N [Table I shows the universal ratio
ρs/(N |�|)]. In the limit N → ∞, the truncated LPA′ slightly
differs from the exact result for the excitation gap m(T ) but
turns out to be extremely accurate for the computation of
the pressure P (T ) (the LPA′ would be exact without the
truncation of Uk(ρ) [38]). For smaller values of N , FN and
FN differ significantly from the N → ∞ limit. While the
large-N result remains a good approximation in the quantum

FIG. 3. (Color online) Same as Fig. 2 but for the universal scaling
function F3(x) [Eq. (3)].

FIG. 4. (Color online) Universal scaling functions FN and FN for
various values of N obtained from the NPRG. The black points show
the analytic results (22) and (25) in the limit N → ∞.

disordered regime, it becomes inaccurate in the quantum
critical and renormalized classical regimes. In particular, it
misses the nonmonotonic behavior of FN (x) in the quantum
critical regime (|x| � 1) for N � 10. The possibility of such a
nonmonotonic behavior is discussed in Ref. [54].

In the renormalized classical regime, it is possible to
reinterpret the large-N result so that it becomes consistent
with the NPRG approach even for small values of N . Since
the correlation length ξ is exponentially large, we expect
the thermodynamics to be dominated by the N − 1 modes
corresponding to transverse fluctuations to the local order.
In the NPRG approach, these modes show up as Goldstone
modes as long as ρ0,k > 0 (i.e., k � ξ−1) and dominate the
RG flow as in the large-N approach (see the discussion in
Sec. III C3 below). Since N − 1 is identified with N in the
large-N approach, the latter overestimates the pressure, and
therefore the scaling function FN , by a factor N/(N − 1).
In Fig. 5, we show that the large-N result, when rescaled
by a factor (N − 1)/N , is indeed consistent with the NPRG
approach. This shows that in the renormalized classical regime

P (T ) � (N − 1)
ζ (3)

2π

T 3

c2
, (44)

which is nothing but the pressure of N − 1 free bosonic modes
with dispersion ω = c|q| [55]. The very small excitation gap
of the transverse fluctuations (m � T ) does not influence the

TABLE I. Universal ratio ρs/(N |�|) in the zero-temperature
ordered phase. The exact result in the limit N → ∞ is 1/4π � 0.080.

N 1000 10 8 6 4 3 2

ρs/(N |�|) 0.0838 0.0853 0.0864 0.0891 0.0965 0.1059 0.1321

012113-6



THERMODYNAMICS IN THE VICINITY OF A . . . PHYSICAL REVIEW E 88, 012113 (2013)

FIG. 5. (Color online) Same as Fig. 4 but for negative values
of x only. The dots show the large-N result rescaled by the factor
(N − 1)/N .

thermodynamics. For N = 2 and N = 3, Eq. (44) agrees with
a RG analysis of the nonlinear sigma model [56,57].

Of particular interest is the temperature variation of the
pressure at the QCP (� = 0). Following Ref. [28], we express
the pressure as

P (T ) = P (0) + ζ (3)

2π
C̃N

T 3

c2
(45)

for � = 0, where C̃N = N2πFN (0)/ζ (3). In the large-N limit
[14],

C̃N

N
� 4

5
− 0.3344

N
+ O

(
1

N2

)
(46)

[the leading-order term 4/5 is given by Eq. (27)]. The
agreement between the O(1/N ) result and the NPRG one
rapidly deteriorates for N � 10 (Table II).

The entropy per unit volume is equal to the temperature
derivative ∂P/∂T of the pressure,

S(T )

V
= N

T 2

c2

[
3FN

(
�

T

)
− �

T
F ′

N

(
�

T

)]
. (47)

Up to the factor NT 2/c2, it is entirely determined by the
universal scaling function 3FN (x) − xF ′

N (x). The latter is
nonmonotonic in the quantum critical regime (Fig. 6).

C. RG flows

In this section, we qualitatively discuss the RG flows in the
various regimes of the phase diagram in the vicinity of the
QCP for N � 3 (Fig. 1). We use the dimensionless variables

ρ̃0,k = k1−d (ZA,kVA,k)1/2ρ0,k, δ̃k = (ZA,kk
2)−1δk,

(48)
λ̃k = kd−3Z

−3/2
A,k V

−1/2
A,k λk,

TABLE II. C̃N/N as obtained from the NPRG and the large-N
approach [Eq. (46)].

N 1000 10 8 6 4 3 2

C̃N/N to O(1/N ) 0.800 0.767 0.758 0.744 0.716 0.689 0.633
C̃N/N (NPRG) 0.812 0.796 0.793 0.788 0.781 0.775 0.767

FIG. 6. (Color online) Universal scaling function 3FN (x) −
xF ′(x) for the entropy per unit volume [Eq. (47)].

and the corresponding RG equations

∂t ρ̃0,k = (1 − d − ηk/2 − η̃k/2)ρ̃0,k

− 3

2
Ĩk,l − N − 1

2
Ĩk,t if ρ̃0,k > 0,

∂t δ̃k = (ηk − 2)δ̃k + λ̃k

2
(N + 2)Ĩk,l if ρ̃0,k = 0,

∂t λ̃k = (d − 3 + 3ηk/2 + η̃k/2)λ̃k

− λ̃2
k[9J̃k,ll(0) + (N − 1)J̃k,tt(0)], (49)

where

ηk = 2λ̃2
kρ̃0,k

∂

∂y
[J̃k,lt(p̃) + J̃k,tl(p̃)]

∣∣∣∣
p̃=0

,

η̃k = 2λ̃2
kρ̃0,k

∂

∂ω̃2
n

[J̃k,lt(p̃) + J̃k,tl(p̃)]

∣∣∣∣
p̃=0

,

(50)

with p̃ = (p/k,iω̃n), y = p2/k2, ω̃n = ωn/ckk = 2πT̃kn

(T̃k = T/ckk). The dimensionless threshold functions Ĩk,α

and J̃k,αβ(p̃) are defined in Appendix B 1. For the sake of
generality, we consider an arbitrary space dimension d.

In the zero-temperature limit, using the results of
Appendix B 2 for the threshold functions, we recover the flow
equations of the (d + 1)-dimensional (classical) O(N ) model
in the LPA′. At the QCP (r0 = r0c), critical fluctuations develop
below the Ginzburg momentum scale kG. In the following, we
discuss only the universal part of the flow k � kG. Deviations
from criticality are characterized by two momentum scales.
The first one, k� = |�|/c, is associated to the detuning from
the QCP. In the T = 0 disordered phase, k−1

� is nothing but
the correlation length. In the T = 0 ordered phase, k� ∼ kJ

is related to the Josephson momentum scale kJ = ρs/c. The
latter separates the critical regime kJ � k � kG from the
Goldstone regime k � kJ dominated by the Goldstone modes.
The second characteristic momentum scale is the thermal scale
kT = 2πT/c associated to the crossover between the quantum
(k 
 kT ) and classical (k � kT ) regimes. The three regimes of
the phase diagram (Fig. 1) are defined by kT 
 k� (quantum
critical), kT � k� and r0 > r0c (quantum disordered), kT �
k� and r0 < r0c (renormalized classical).

1. Quantum critical regime

The RG flow in the quantum critical regime is shown in
Fig. 7 for N = 3. The parameters of the microscopic action (1)
are chosen such that the initial value � of the momentum cutoff
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FIG. 7. (Color online) RG flows in the quantum critical regime
(d = 2 and N = 3). The vertical dash-dotted line shows the ther-
mal momentum scale kT = �e−10. (� = c0 = 1, u0 = 27.6, r0c �
0.065 355.)

is of the order of the Ginzburg scale kG. At the QCP (r0 = r0c)
and for T = 0, we observe plateaus characteristic of critical
behavior: ρ̃0,k ∼ ρ̃∗

crit, λ̃k ∼ λ̃∗
crit, and ηk = η̃k = η (with η the

anomalous dimension at the three-dimensional Wilson-Fisher
fixed point). At finite temperatures, the flow is modified
when k becomes smaller than the thermal scale kT : ρ̃0,k and
ηk,η̃k rapidly vanish while λ̃k diverges; the (dimensionful)
order parameter ρ0,k vanishes and mk = √

δk/VA,k takes a
finite value (indicating that the system is in a disordered
phase). Near kT , ηk and η̃k differ, implying a breakdown
of Lorentz invariance. It is however difficult to estimate the
renormalized value of the velocity. At finite temperature, VA,k

gives the coefficient of the ω2
n term in the expansion of the

vertex �
(2)
k,t (q; ρ0,k) in powers of ω2

n. ck = √
ZA,k/VA,k can be

identified with the velocity of the (transverse) fluctuations only
when k 
 kT . For k � kT , the flow is classical (the propagator
is dominated by its ωn=0 = 0 component) and VA,k does not
enter the RG equations anymore. In this regime the actual value
c̄k of the velocity should be obtained from the retarded vertex
�

(2)
k,t (q,ω; ρ0,k) = U ′

k(ρ0,k) + ZA,k(q2 − ω2/c̄2
k) + · · · (with ω

a real frequency) [58].

2. Quantum disordered regime

Figure 8 shows the flow in the quantum disordered regime.
At T = 0, the critical flow terminates at k ∼ k�. For k � k�,
ρ̃0,k and ηk = η̃k vanish while λ̃k diverges; the (dimensionful)
order parameter ρ0,k vanishes and mk = √

δk/VA,k takes a
finite value. As expected, a finite temperature has hardly any

FIG. 8. (Color online) Same as Fig. 7 but in quantum disordered
regime [r0 = r0c(1 − 10−6)]. The dotted and dash-dotted vertical lines
show the momentum scales k� and kT = �e−12, respectively.
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FIG. 9. (Color online) Same as Fig. 7 but in renormalized classical
regime [r0 = r0c(1 + 10−5)]. The dotted and dash-dotted vertical lines
show the momentum scales kJ and kT = �e−20, respectively.

effect on the flow when kT � k�. Only for kT ∼ k� (i.e., near
the crossover to the quantum critical regime) do we observe a
modification of the T = 0 flow.

3. Renormalized classical regime

The flow in the renormalized classical regime is shown
in Fig. 9. The plateaus observed for k 
 kJ ∼ �e−10 in
ρ̃0,k , λ̃k and ηk,η̃k show that the behavior of the system
at sufficiently high energies (or short distances) is critical.
This critical regime terminates at the Josephson scale kJ .
For k � kJ , longitudinal fluctuations are suppressed [the
(dimensionless) mass 2λ̃kρ̃0,k of the longitudinal mode is
much larger than unity] and the flow is dominated by the
Goldstone modes. The anomalous dimensions ηk and η̃k then
nearly vanish and the dimensionless interaction λ̃k exhibits a
second plateau whose physical meaning is discussed below.
At finite temperatures, this plateau terminates at the thermal
scale kT with λ̃k vanishing for k � kT .

In the Goldstone regime, the flow equations simplify into
[59]

∂t ρ̃0,k =
(

1 − d − ηk + η̃k

2

)
ρ̃0,k − N − 1

2
Ĩk,t,

∂t λ̃k = (d − 3)λ̃k − λ̃2
k(N − 1)J̃k,tt(0),

(51)

where the threshold functions are given in Appendix B 3. ρ̃0,k

becomes very large in the renormalized classical regime. For
k smaller than the inverse correlation length ξ−1, ρ̃0,k will
ultimately vanish, but ξ being exponentially large this is not
seen in Fig. 9. In Sec. III D we discuss in more detail the
behavior of ρ̃0,k and make the connection with the quantum
NLσM.

For kT � k � kJ (quantum Goldstone regime), we
can take the T = 0 limit of the threshold functions
(Appendix B 3a). We then find the fixed-point value

λ̃∗ = d − 3

(N − 1)J̃k,tt(0)
= 4π3/2

(N − 1)(2 − √
2)

, (52)

where the last value is obtained with the exponential cutoff
r(Y ) = 1/(eY − 1) [Eq. (33)] and for d = 2. This fixed-point
value shows up as a plateau λ̃k � λ̃∗ for kT � k � kJ ,
which should not be confused with the plateau λ̃k � λ̃∗

crit
corresponding to the critical regime kJ � k � kG (Fig. 9).
As discussed in detail in Ref. [25], the constant value λ̃k � λ̃∗
and the diverging ρ̃0,k ∼ k1−d (corresponding to a constant
value of the order parameter ρ0,k) imply a vanishing of
the longitudinal propagator in the infrared limit: Gl(p) ∼
1/(ω2

n + c2p2)(3−d)/2 for kT � |p|,|ωn|/c � kJ , and d < 3
(the vanishing is logarithmic for d = 3).

In the classical Goldstone regime k � kT , the flow is
dominated by classical (ωn = 0) transverse fluctuations. As
a result, the threshold function J̃k,tt becomes proportional to
T̃k (Appendix B 3b) and λ̃k vanishes linearly with k. Since
only the classical component φ(r) ≡ φ(r,iωn = 0) of the field
matters, the effective action (36) becomes

�cl
k [φ] = β

∫
ddr

{
ZA,k

2
(∇φ)2 + λk

2
(ρ − ρ0,k)2

}
(53)

for ρ0,k > 0. Rescaling the field φ → √
T φ, we obtain the

usual form

�cl
k [φ] =

∫
ddr

{
ZA,k

2
(∇φ)2 + λcl

k

2
(ρ − ρ0,k)2

}
(54)

of the effective action for a classical model in the LPA′, with the
coupling constant λcl

k = T λk . The appropriate dimensionless
variable

λ̃cl
k = λcl

k Z−2
A,kk

d−4 (55)

satisfies the RG equation

∂t λ̃
cl
k = (d − 4)λ̃cl

k − (N − 1)J̃ cl
k,tt(0)

(
λ̃cl

k

)2
(56)

with the threshold function

J̃ cl
k,tt = T̃ −1

k J̃k,tt. (57)

This equation admits the fixed-point value

λ̃cl∗ = d − 4

(N − 1)J̃ cl
k,tt(0)

= 4π

(N − 1) ln 2
, (58)

where the last value is obtained with the exponential cutoff
and for d = 2.

D. Goldstone regime and NLσM

In the Goldstone regime, the behavior of the system is
governed by the Goldstone modes and we expect a description
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based on an effective NLσM to be possible. To identify the
coupling constant of the effective NLσM [60], we consider
the following microscopic action:

S[ϕ] =
∫ β

0
dτ

∫
ddr

{
ZA

2
(∇ϕ)2 + VA

2
(∂τϕ)2

+ λ

2
(ρ − ρ0)2

}
(59)

(ρ = ϕ2/2), which is analog to the ansatz (36), (37) for
the effective action �k[φ]. This action can be written in the
dimensionless form

S[ϕ̃] =
∫ β̃

0
dτ̃

∫
dd r̃

{
1

2
(∇r̃ ϕ̃)2 + 1

2
(∂τ̃ ϕ̃)2 + λ̃

2
(ρ̃ − ρ̃0)2

}
,

(60)

where r̃ = kr, τ̃ = √
ZA/VAkτ , and ϕ̃ is defined in the same

way as φ̃ in Eq. (48). Rescaling the field ϕ̃ → √
2ρ̃0ϕ̃, we then

obtain

S[ϕ̃] = ρ̃0

∫ β̃

0
dτ̃

∫
dd r̃

{
(∇r̃ ϕ̃)2 + (∂τ̃ ϕ̃)2 + λ̃ρ̃0

2
(ϕ̃2 − 1)2

}
.

(61)

In the limit λ̃ρ̃0 
 1, the last term in (61) imposes the
constraint ϕ̃2 = 1, and we obtain a quantum NLσM with
dimensionless coupling constant g̃ = 1/2ρ̃0.

In the NPRG approach, the coupling constant g̃k = 1/2ρ̃0,k

satisfies the RG equation

∂t g̃k = −
(

1 − d − ηk + η̃k

2

)
g̃k + (N − 1)Ĩk,tg̃

2
k , (62)

which can be deduced from (51). Equation (62) should be
considered together with the RG equation of the dimensionless
temperature T̃k = T/ckk,

∂t T̃k = −
(

1 − ηk − η̃k

2

)
T̃k. (63)

Following Chakravarty et al. [18], we consider the coupling
constants g̃k and t̃k = g̃kT̃k (rather than g̃k and T̃k), with

∂t t̃k = −(2 − d − ηk)t̃k + (N − 1)Ĩk,tg̃k t̃k. (64)

In the quantum Goldstone regime k 
 kT , the system is
effectively in the zero-temperature limit since T̃k � 1. Let us
first consider the theta cutoff function [61]

Rk(q) = ZA,k

(
k2 − q2 − ω2

n

c2
k

)
�

(
k2 − q2 − ω2

n

c2
k

)
. (65)

In that case, one has 2ηkρ̃0,k = −Ĩk,t (see Appendix B 3c), so
that g̃k satisfies the flow equation

∂t g̃k = −(1 − d)g̃k − 2
Kd+1

d + 1
(N − 2)g̃2

k . (66)

We have used ηk = η̃k (which holds for T̃k → 0) and Ĩk,t =
−2Kd+1/(d + 1) [with Kd (2π )d = 4vd (2π )d the surface of
the d-dimensional unit sphere]. Equation (66) is nothing but
the flow equation of the coupling constant in the (d + 1)-
dimensional classical NLσM [18,62,63]. It agrees with the
result of Chakravarty et al. to order g̃2

k [18]. In particular, we
find that the O(g̃2

k ) term vanishes for the O(2) model (N = 2)

as expected. Note however that the coefficient of (N − 2)g̃2
k

depends on the RG scheme and may therefore differ from
the result of Ref. [18] obtained with a sharp cutoff. For
an arbitrary function Rk(q), the equality 2ηkρ̃0,k = −Ĩk,t is
in general violated, which does not allow us to recover the
factor N − 2 in the RG equation ∂t g̃k . For example, with the
exponential cutoff r(Y ) = 1/(eY − 1), −2ηkρ̃0,k/Ĩk,t � 1.11
for d = 2. This failure is clearly an artifact of the LPA′. In the
regime where Eq. (66) is valid, the O(g̃2

k ) term is small and
the LPA′ remains nevertheless a very good approximation to
the flow equation of g̃k . In one dimension, ∂t g̃k is independent
of the choice of the cutoff function Rk to O(g̃2

k ), in agreement
with the fact that the beta function of the classical two-
dimensional NLσM is universal (i.e., independent of the RG
scheme) to two-loop order [64].

There is a quantum classical crossover when k ∼ kT , and for
k � kT the system is governed by an effective classical NLσM
with coupling constant t̃k [18]. With the theta cutoff (65), using
2ηkρ̃0,k = −Ĩk,t and Ĩk,t = −2(Kd/d)t̃k/g̃k (Appendix B 3c),
we recover the beta function

∂t t̃k = −(2 − d)t̃k − 2
Kd

d
(N − 2)t̃2

k (67)

of the d-dimensional classical NLσM [18]. As discussed
above, for an arbitrary cutoff function Rk(q), the coefficient
N − 2 is not exactly reproduced except for d = 2 due to the
universality of the beta function ∂t t̃k to two-loop order in that
case.

E. O(2) model: BKT transition temperature

In the O(2) model, there is a finite-temperature BKT
transition for r0 � r0c. For the classical O(2) model, the
NPRG reproduces most of the universal properties of the
BKT transition [51,52]. In particular one finds a value ρ̃∗

0 of
the dimensionless order parameter (the spin-wave “stiffness”)
such that the beta function β(ρ̃0,k) = ∂t ρ̃0,k nearly vanishes for
ρ̃0,k � ρ̃∗

0 . This implies the existence of a line of quasifixed
points and enables us to identify a low-temperature phase (T <

TBKT) where the running of the stiffness ρ̃0,k , after a transient
regime, becomes very slow, implying a very large (although not
strictly infinite as expected in the low-temperature phase of the
BKT transition) correlation length ξ . In this low-temperature
phase, the anomalous dimension ηk depends on the (slowly
varying) stiffness ρ̃0,k . It takes its largest value ∼1/4 when the
RG flow crosses over to the disordered (long-distance) regime
(for ρ̃0,k ∼ ρ̃∗

0 and k ∼ ξ−1), and is then rapidly suppressed
as ρ̃0,k further decreases. On the other hand, the beta function
is well approximated by β(ρ̃0,k) = const × (ρ̃∗

0 − ρ̃0,k)3/2 for
ρ̃0,k � ρ̃∗

0 , and the essential scaling ξ ∼ econst/(T −TBKT)1/2
of the

correlation length above the BKT transition temperature TBKT

is reproduced [52]. Thus, although the NPRG approach does
not yield a low-temperature phase with an infinite correlation
length, it nevertheless allows us to estimate the BKT transition
temperature from the value of ρ̃∗

0 . A reasonable estimate of
the BKT transition temperature in the two-dimensional XY
model has been obtained using the NPRG [65]. The same
method has been used to determine TBKT in a two-dimensional
Bose gas [53] in very good agreement with Monte Carlo
simulations [66,67]. We refer to Ref. [53] for more details
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FIG. 10. (Color online) BKT transition temperature TBKT vs the
zero-temperature stiffness ρs for various values of u0 (� = 100 and
c0 = 1). Sufficiently close to the quantum critical point, the ratio
TBKT/ρs � 1.59 is universal (as shown here by its independence with
respect to u0).

about the determination of the BKT transition temperature in
the NPRG approach.

The BKT transition temperature corresponds to an essential
singularity in the scaling function F2(x). SinceF2 is universal,
the ratios TBKT/|�| and TBKT/ρs are also universal in the
vicinity of the QCP [recall that ρs ≡ ρs(T = 0) is the stiffness
in the zero-temperature ordered phase]. The NPRG approach
predicts TBKT/ρs � 1.59 with the exponential cutoff (Fig. 10)
and TBKT/ρs � 1.5 with a theta cutoff Rk(q) = ZA,k(k2 −
q2)�(k2 − q2) acting only on momenta. On the other hand,
the ratio TBKT/ρs(T

−
BKT) = π/2 is universal anywhere on the

transition line, where ρs(T
−

BKT) denotes the stiffness jump at
the transition [68,69]. While our determination of TBKT is not
precise enough to yield an accurate estimate of TBKT/ρs , the
latter is close to π/2, which implies that ρs(T

−
BKT) is only

slightly reduced with respect to the zero-temperature stiffness
ρs .

More generally, in the low-temperature phase near the
QCP we can write the stiffness in the scaling form ρs(T ) =
ρsJ (T/ρs) with J (x) a universal scaling function satisfying
J (0) = 1. The weak suppression of ρs by thermal fluctuations
for T < TBKT implies that J (x) remains close to unity for
x < πρs(T

−
BKT)/2ρs .

IV. CONCLUSION

Using a NPRG approach, we have obtained the universal
functionFN which determines the scaling form of the pressure
near a relativistic QCP with O(N ) symmetry [Eq. (3)]. For
N � 10, the results are in strong disagreement with the
large-N approach both in the renormalized classical and
quantum critical regimes. If the large-N approach is properly
interpreted, its results in the renormalized classical regime
can be reconciled with those of the NPRG approach. It fails
however to describe the nonmonotonic behavior of the scaling
function FN (x) in the quantum critical regime (|x| � 1) as
predicted by the NPRG approach. A similar nonmonotonic
behavior is observed in the scaling function of the entropy.

We have also shown how the NPRG allows us to obtain
a complete picture of the quantum O(N ) model in the
vicinity of the zero-temperature QCP when N � 3. The
characteristic momentum scales kT and k�, associated with
temperature and detuning from the QCP, show up very

clearly and yield distinctive RG flows in the quantum critical,
quantum disordered, and renormalized classical regimes. In the
renormalized classical regime, where the physics is dominated
by the N − 1 Goldstone modes of zero-temperature broken-
symmetry phase, the NPRG equations reproduce those of the
quantum O(N ) NLσM [18].

In the quantum O(2) model, the ratio between the BKT
transition temperature TBKT and the zero-temperature stiffness
ρs(0) is universal near the QCP. The NPRG results show that
TBKT/ρs(0) is close to the universal ratio TBKT/ρs(T

−
BKT) =

π/2, implying that the stiffness ρs(T
−

BKT) at the transition is
only slightly reduced with respect to ρs(0).

The superfluid–Mott-insulator (at constant density) of a
Bose gas in an optical lattice provides us with a well
controlled experimental realization of a relativistic QCP with
a two-component (complex) field. Recent experiments have
shown that it should be possible in the near future to observe
quantum criticality associated with this QCP [70]. A measure
of the temperature dependence of the pressure in the quantum
critical regime would give an experimental estimate of the
universal number F2(0) and enable a comparison with our
theoretical resultF2(0) � 0.147 (i.e., C̃2/2 � 0.767). Whether
the full scaling function F2(x) can be determined in the
present experimental conditions requires a detailed study of
the relativistic O(2) QCP in the Bose-Hubbard model which
will be reported elsewhere.

ACKNOWLEDGMENTS

We would like to thank N. Wschebor and A. Ipp for useful
discussions or correspondence.

APPENDIX A: CALCULATION OF Tr ln g−1

In this Appendix, we compute

1

βV
Tr ln g−1 =

∫
q

ln
(
q2 + ω2

n

/
c2 + m2/c2

)
. (A1)

Since Tr ln g−1 is divergent, we subtract an infinite constant
and consider

D(m2) =
∫

q

ln
(
q2 + ω2

n

/
c2 + m2/c2

)
−

∫
q

∫
ω

ln(q2 + ω2/c2). (A2)

It is convenient to write D(m2) = D0(m2) + D1(m2), where

D0(m2) =
∫

q

∫
ω

[ln(q2 + ω2/c2 + m2/c2)

− ln(q2 + ω2/c2)], (A3)

and

D1(m2) =
∫

q

ln(q2 + ω2
n

/
c2 + m2/c2)

−
∫

q

∫
ω

ln(q2 + ω2/c2 + m2/c2). (A4)

Note that D1(m2) vanishes at zero temperature.
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1. D0(m2)

Using D0(0) = 0 and

D′
0(m2) =

∫
q

∫
ω

1

ω2 + c2q2 + m2
= − 6r0c

u0c2
− m

4πc2
,

(A5)

we obtain

D0(m2) = −6r0cm
2

u0c2
− m3

6πc2
. (A6)

2. D1(m2)

Given that
1

β

∑
ωn

1

ω2
n + a2

−
∫

dω

2π

1

ω2 + a2
= 1

a

1

eβa − 1
(A7)

(a > 0), we deduce

D′
1(m2) =

∫
q

1√
c2q2 + m2

1

exp(β
√

c2q2 + m2) − 1
. (A8)

Performing the momentum integral, we then obtain

D′
1(m2) = 1

2πβc2
[−β(c� − m) + ln(eβc� − 1)

− ln(eβm − 1)]

� 1

2πβc2
[βm − ln(eβm − 1)] (A9)

for T � c�. From

D′
1(m2) = − 1

2πβc2
ln(1 − e−βm)

= 1

2πβc2

∞∑
k=1

e−kβm

k
, (A10)

we deduce

D1(m2) = C − 1

πβ3c2

∞∑
k=1

(
βm

k2
+ 1

k3

)
e−kβm

= C − 1

πβ3c2
[βmLi2(e−βm) + Li3(e−βm)],

(A11)

where Lis(z) is a polylogarithm [Eq. (26)]. The integration
constant C is fixed by requiring limm2→∞ D1(m2) = 0. Since
Lis(z) � z for |z| → 0, this gives C = 0.

3. D(m2)

From Eqs. (A6) and (A11), we finally obtain

D(m2) = −6r0cm
2

u0c2
− m3

6πc2

− 1

πβ3c2
[βmLi2(e−βm) + Li3(e−βm)]. (A12)

Using the same method, we can compute D(m2) in the
fermionic case (which amounts to replacing the bosonic
Matsubara frequencies ωn by fermionic ones). We have
verified that we then reproduce the result of Ref. [71] obtained
by a different method. The fermionic result differs from
the bosonic one only by the sign of the argument of the
polylogarithm functions.

APPENDIX B: DIMENSIONLESS THRESHOLD
FUNCTIONS

1. Definition

The dimensionless threshold functions [Eq. (50)] are
defined by

Ĩk,α = 2vd

∫
p̃

yd/2−1
[
ηkY r + 2Y 2r ′ + (η̃k − ηk)(r + Yr ′)ω̃2

n

]
Ã−2

α ,

J̃k,αβ(0) = 2vd

∫
p̃

yd/2−1
[
ηkY r + 2Y 2r ′ + (η̃k − ηk)(r + Yr ′)ω̃2

n

]
Ã−2

α Ã−1
β ,

∂

∂y
J̃k,αβ(p̃)

∣∣∣∣
p̃=0

= −4
vd

d

∫
p̃

yd/2
{
2
[
ηkY r + 2Y 2r ′ + (η̃k − ηk)(r + Yr ′)ω̃2

n

]
Ã′

αÃ−3
α (B1)

− [
ηkr + (ηk + 4)Yr ′ + 2Y 2r ′′ + (η̃k − ηk)(2r ′ + Yr ′′)ω̃2

n

]
Ã−2

α

}
Ã′

βÃ−2
β ,

∂

∂ω̃2
n

J̃k,αβ(p̃)

∣∣∣∣
p̃=0

= 2vd

∫
p̃

yd/2−1
[
ηkY r + 2Y 2r ′ + (η̃k − ηk)(r + Yr ′)ω̃2

n

](
Ã2

1 − Ã2Ãβ

)
Ã−2

α Ã−3
β ,

where

Ãt = Y (1 + r) + δ̃k, Ãl = Ãt + 2λ̃kρ̃0,k,

Ã′
l = Ã′

t = 1 + r + Yr ′, (B2)

and

Ã1 = 2ω̃n(1 + r + Yr ′),

Ã2 = 1 + r + Yr ′ + 2ω̃2
n(2r ′ + Yr ′′).

(B3)
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We use the notations v−1
d = 2d+1πd/2�(d/2), Y = y + ω̃2

n,
r ≡ r(Y ), r ′ ≡ r ′(Y ), r ′′ ≡ r ′′(Y ), and∫

p̃

≡ T̃k

∑
ω̃n

∫ ∞

0
dy. (B4)

2. Zero-temperature limit

For T = 0, Lorentz invariance implies that ZA,k = VA,k and
ηk = η̃k . Using

vd

∫ ∞

0
dy yd/2−1

∫ ∞

−∞

dω̃

2π
f (Y )

= vd+1

∫ ∞

0
dY Y (d+1)/2−1f (Y ) (B5)

for any function f (Y ) = f (y + ω̃2
n), we obtain

Ĩk,α = 2vd+1

∫ ∞

0
dY Y (d+1)/2(ηkr + 2Yr ′)Ã−2

α ,

J̃k,αβ(0) = 2vd+1

∫ ∞

0
dY Y (d+1)/2(ηkr + 2Yr ′)Ã−2

α Ã−1
β .

(B6)

Equation (B5) implies∫ ∞

0
dy yd/2

∫ ∞

−∞

dω̃

2π
f (Y ) = vd+3

vd+2

∫ ∞

0
dY Y (d+1)/2f (Y ).

(B7)

Using

vd+3

vd+2
= d

d + 1

vd+1

vd

, (B8)

we obtain

∂

∂y
[J̃k,lt(p̃) + J̃k,tl(p̃)]

∣∣∣∣
p̃=0

= −8
vd+1

d + 1

∫ ∞

0
dY Y (d+1)/2(1 + r + Yr ′)Ã−2

l Ã−2
t

×[
Y (ηkr + 2Yr ′)(1 + r + Yr ′)

(
Ã−1

l + Ã−1
t

)
−ηkr − (ηk + 4)Yr ′ − 2Y 2r ′′]. (B9)

Equations (B6) and (B9) yield the known RG equations of the
(d + 1)-dimensional (classical) O(N ) model in the LPA′.

3. Goldstone regime

In the Goldstone regime 2λ̃kρ̃0,k 
 1, longitudinal fluctu-
ations are subleading with respect to the transverse ones. This
yields Ĩk,l = J̃k,ll = 0,

Ĩk,t = 4vd

∫
p̃

yd/2−1Y 2r ′Ã−2
t ,

J̃k,tt = 4vd

∫
p̃

yd/2−1Y 2r ′Ã−3
t ,

(B10)

and

∂

∂y
J̃k,lt(p̃)

∣∣∣∣
p̃=0

= 2

λ̃2
kρ̃

2
0,k

vd

d

∫
p̃

yd/2(2r ′ + Yr ′′)
1 + r + Yr ′

Y (1 + r)2
,

∂

∂y
J̃k,tl(p̃)

∣∣∣
p̃=0

= − 2

λ̃2
kρ̃

2
0,k

vd

d

∫
p̃

yd/2 1 + r + Yr ′

(1 + r)3

× [2r ′2 − (1 + r)r ′′] (B11)

to leading order [we have set ηk = η̃k = 0 on the right-hand
sides of Eqs. (B10) and (B11)].

a. Quantum Goldstone regime kT � k

For kT � k (i.e., T � ckk), we can take the zero-
temperature limit in (B10) and (B11), which gives

Ĩk,t = 4vd+1

∫ ∞

0
dY Y (d−1)/2 r ′

(1 + r)2
,

J̃k,tt = 4vd+1

∫ ∞

0
dY Y (d−3)/2 r ′

(1 + r)3
,

(B12)

and

∂

∂y
J̃k,lt(p̃)

∣∣∣∣
p̃=0

= 2

λ̃2
kρ̃

2
0,k

vd+1

d + 1

∫ ∞

0
dY Y (d−1)/2

× 1 + r + Yr ′

(1 + r)2
(2r ′ + Yr ′′),

∂

∂y
J̃k,tl(p̃)

∣∣∣∣
p̃=0

= − 2

λ̃2
kρ̃

2
0,k

vd+1

d + 1

∫ ∞

0
dY Y (d+1)/2

× 1 + r + Yr ′

(1 + r)3
[2r ′2 − (1 + r)r ′′].

(B13)

Equations (B12) and (B13) can also be deduced from (B6) and
(B9) in the limit 2λ̃kρ̃0,k 
 1 and with δ̃k = 0.

b. Classical Goldstone regime k � kT

For k � kT , the Matsubara sums in (B10) and (B11) are
dominated by the zero-frequency term ω̃n = 0, which gives

Ĩk,t = 4vd T̃k

∫ ∞

0
dy yd/2−1 r ′

(1 + r)2
,

J̃k,tt = 4vd T̃k

∫ ∞

0
dy yd/2−2 r ′

(1 + r)3
,

(B14)

and

∂

∂y
J̃k,lt(p̃)

∣∣∣∣
p̃=0

= 2

λ̃2
kρ̃

2
0,k

vd

d
T̃k

∫ ∞

0
dy yd/2−1 1 + r + yr ′

(1 + r)2

× (2r ′ + yr ′′),
∂

∂y
J̃k,tl(p̃)

∣∣∣∣
p̃=0

= − 2

λ̃2
kρ̃

2
0,k

vd

d
T̃k

∫ ∞

0
dy yd/2 1 + r + yr ′

(1 + r)3

× [2r ′2 − (1 + r)r ′′]. (B15)

c. theta cutoff

In this section, we show that with the theta cutoff (65) the
relation 2ηkρ̃0,k = −Ĩk,t is satisfied in the Goldstone regime
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(to leading order in 1/λ̃kρ̃0,k). Equation (65) implies

r(Y ) = 1 − Y

Y
�(1 − Y ),

r ′(Y ) = − 1

Y 2
�(1 − Y ) − 1 − Y

Y
δ(1 − Y ), (B16)

r ′′(Y ) = 2

Y 3
�(1 − Y ) + 2

Y 2
δ(1 − Y ) + 1 − Y

Y
δ′(1 − Y ).

At zero temperature, from Eq. (B12) we deduce

Ĩk,t = −8
vd+1

d + 1
. (B17)

Since r(1 + r + Yr ′) = r ′(1 + r + Yr ′) = 0, Eqs. (B13) sim-
plify into

∂

∂y
J̃k,lt(p̃)

∣∣∣∣
p̃=0

= ∂

∂y
J̃k,tl(p̃)

∣∣∣∣
p̃=0

= 2

λ̃2
kρ̃

2
0,k

vd+1

d + 1

∫ ∞

0
dYY (d+1)/2r ′′ 1 + r + Yr ′

(1 + r)2
.

(B18)

The product r ′′(1 + r + Yr ′) is ill defined with the theta cutoff
because of the derivative δ′(1 − Y ) of the Dirac function in r ′′.

To circumvent this difficulty, we integrate by part,

∂

∂y
J̃k,lt(p̃)

∣∣∣∣
p̃=0

= ∂

∂y
J̃k,tl(p̃)

∣∣∣∣
p̃=0

= − 2

λ̃2
kρ̃

2
0,k

vd+1

d + 1

∫ 1

0
dY

{
r ′ ∂

∂Y

Y (d+1)/2

1 + r

+ r ′2

2

∂

∂Y

Y (d+3)/2

(1 + r)2

}
= 1

λ̃2
kρ̃

2
0,k

vd+1

d + 1
,

(B19)

where we have used Y (1 + r) = 1 when 0 � Y �
1. From (B17) and (B19), we deduce 2ηkρ̃0,k =
−Ĩk,t.

In the classical Goldstone regime, we retain only the zero-
frequency term ω̃n = 0 in the Matsubara sums. The calculation
of Ĩk,t and ηk is similar to the T = 0 limit with the (d +
1)-dimensional integrals over Y replaced by d-dimensional
integrals over y. Again we find 2ηkρ̃0,k = −Ĩk,t, with

Ĩk,t = 4vd T̃k

∫ ∞

0
dy yd/2−1 r ′(y)

[1 + r(y)]2
= −8T̃k

vd

d
. (B20)
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