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Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France

(Received 10 September 2014; published 1 December 2014)

We reexamine the two-dimensional linear O(2) model (ϕ4 theory) in the framework of the nonperturbative
renormalization-group. From the flow equations obtained in the derivative expansion to second order and with
optimization of the infrared regulator, we find a transition between a high-temperature (disordered) phase and a
low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement
with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the
transition. In particular, we find the anomalous dimension η(TKT) � 0.24 and the stiffness jump ρs(T

−
KT) � 0.64 at

the transition temperature TKT, in very good agreement with the exact results η(TKT) = 1/4 and ρs(T
−

KT) = 2/π ,
as well as an essential singularity of the correlation length in the high-temperature phase as T → TKT.
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I. INTRODUCTION

The Kosterlitz-Thouless (KT) transition occurs in two-
dimensional systems with global O(2) symmetry such as the
two-dimensional XY model [1–3]. It has been observed in
liquid helium films [4–7], arrays of Josephson junctions [8],
trapped two-dimensional atomic gases [9–12], etc.

The KT transition differs from more conventional finite-
temperature phase transitions in a number of aspects. It is
not characterized by spontaneous symmetry breaking, and
the low-temperature phase exhibits algebraic order (rather
than true long-range order). Nevertheless, the system shows a
nonzero “stiffness” ρs(T ) for all temperatures T < TKT. Above
the transition temperature TKT, one observes a standard disor-
dered phase with exponentially decaying correlation functions.
However, the correlation length ξ does not diverge as a
power law of τ = T − TKT but shows an essential singularity
ξ ∼ exp(c/

√
τ ). The transition is also characterized by a jump

of the stiffness which vanishes for T > TKT and takes the
universal value 2/π for T → T −

KT [13,14].
The key role of topological defects (vortices) was rec-

ognized by Kosterlitz and Thouless who formulated the
KT transition as a vortex-antivortex-pair unbinding transition
[2,3,15–17]. Standard studies of the KT transition explicitly
introduce the vortices in the analysis and use a mapping
to the Coulomb gas or sine-Gordon models. A perturbative
renormalization-group approach is then sufficient to derive
the universal features of the KT transition.

The KT transition in the two-dimensional linear O(2) model
(ϕ4 theory for a two-component vector field) provides an
important benchmark for the nonperturbative renormalization
group (NPRG). A distinctive feature of the NPRG approach
is that the vortices are not introduced explicitly [18–20],
and thus the RG equations are the standard ones of the
d-dimensional O(N ) model with N = 2 and d = 2. In the
approach of Gersdorff and Wetterich (GW) [19], the KT
transition is not captured stricto sensu since the correlation
length is always finite. Nevertheless, below a “transition”
temperature TKT one finds a line of quasifixed points implying
a very large correlation length (although not infinite as

expected in the low-temperature phase of the KT transition).
Furthermore, the essential scaling of the correlation length
ξ above TKT is reproduced except in the immediate vicinity
of TKT. Thus, although the NPRG approach by GW does
not yield a low-temperature phase with an infinite correlation
length, it nevertheless allows one to estimate the KT transition
temperature and reproduce most of the universal features of
the transition.

Using a lattice version of the NPRG, TKT has been computed
with reasonable accuracy for the ferromagnetic XY model on
the square lattice [21]. The NPRG approach has also been used
to study two-dimensional superconductors [22] and bosonic
superfluids [23–26]. The superfluid transition temperature in
a two-dimensional Bose gas, with or without an optical lattice
[24,25], deduced from the NPRG approach turns out to be in
very good agreement with Monte Carlo simulations [27–29].

In spite of these successes, the NPRG approach to the
two-dimensional linear O(2) model is not fully satisfying.
First, from a conceptual point of view, one would like to
find a true transition between a high-temperature phase with
exponentially decaying correlations and a low-temperature
phase exhibiting algebraic order and a line of fixed points.
Second, from a more practical point of view, we expect the
NPRG approach to yield reasonable estimates not only of
the transition temperature TKT and the anomalous dimension
η(TKT) but also of the temperature dependence of the anoma-
lous dimension η(T ) and the stiffness ρs(T ) [including the
value of ρs(T

−
KT)] in the low-temperature phase, which has not

been possible so far due to the absence of a line of true fixed
points at low temperatures.

In this paper, we reconsider the NPRG approach to the
two-dimensional linear O(2) model. While our RG equations
are the same as those of GW [19], we explore various ways to
set up the RG procedure. In particular we use the freedom in
the choice of the infrared regulator and the way the anomalous
dimension is computed. The commonly used exponential
regulator [30] with an arbitrary prefactor α considered as a
variational parameter, along with a fixed renormalization point
(see Sec. III B), allows us to find a transition with all expected
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features of the KT transition. In the high-temperature phase,
we reproduce the essential singularity of the correlation length
as T → TKT. In the low-temperature phase, for all T � TKT,
it is possible to find a value of the variational parameter α

such that the RG flow is attracted by a (true) fixed point of the
RG equations. The resulting line of fixed points characterizes
a phase with no spontaneous symmetry breaking, algebraic
order (i.e., ξ = ∞), and nonzero anomalous dimension η(T )
and stiffness ρs(T ). At the transition, we find η(TKT) � 0.24
and ρs(T

−
KT) � 0.64, in very good agreement with the exact

results η(TKT) = 1/4 and ρs(T
−

KT) = 2/π � 0.6366.

II. NPRG APPROACH

The linear O(2) model is defined by the action

S[ϕ] =
∫

ddr

{
1

2
(∇ϕ)2 + r0

2
ϕ2 + u0

4!
(ϕ2)

2
}
, (1)

where ϕ = (ϕ1,ϕ2) is a two-component real field. For the
sake of generality we consider an arbitrary dimension d. The
model is regularized by an ultraviolet momentum cutoff 	.
In practice, we consider u0 as a fixed parameter and vary
r0 ∝ T − T0 to explore the phases of the system (T0 denotes
the mean-field transition temperature).

The strategy of the NPRG approach is to build a family of
theories indexed by a momentum scale k such that fluctuations
are smoothly taken into account as k is lowered from the
microscopic scale 	 down to 0 [31–33]. This is achieved by
adding to the action (1) the infrared regulator


Sk[ϕ] = 1

2

∫
ddp

(2π )d
∑

i

ϕi(−p)Rk(p)ϕi(p), (2)

so that the partition function

Zk[J] =
∫

D[ϕ] e−S[ϕ]−
Sk [ϕ]+∫
dd rJ·ϕ (3)

becomes k dependent. The scale-dependent effective action

�k[φ] = − ln Zk[J] +
∫

ddrJ · φ − 
Sk[φ] (4)

is defined as a modified Legendre transform of − ln Zk[J]
which includes the subtraction of 
Sk[φ]. Here φ(r) = 〈ϕ(r)〉
is the order parameter (in the presence of the external source J).

The initial condition of the flow is specified by the
microscopic scale k = 	 where fluctuations are frozen by
the 
Sk term, so that �	[φ] = S[φ]. The effective action
of the original model (1) is given by �k=0 provided that
Rk=0 vanishes. For a generic value of k, the regulator Rk(p)
suppresses fluctuations with momentum |p| � k but leaves
unaffected those with |p| � k. We use an exponential regulator

Rk(p) = Zkp2r(p2/k2), r(y) = α

ey − 1
, (5)

with an arbitrary parameter α > 0. The k-dependent constant
Zk is defined below.

The variation of the effective action with k is given by
Wetterich’s equation [34]

∂t�k[φ] = 1
2 Tr

{
∂tRk

(
�

(2)
k [φ] + Rk

)−1}
, (6)

where t = ln(k/	). �
(2)
k [φ] denotes the second functional

derivative of �k[φ]. In Fourier space, the trace involves a sum
over momenta as well as the internal index i = 1,2 of the φ

field.
To solve the RG equation (6), we use a derivative expansion

of �k[φ] [31,32]. To second order,

�k[φ] =
∫

ddr

{
1

2
Zk(ρ)(∇φ)2 + 1

4
Yk(ρ)(∇ρ)2 + Uk(ρ)

}
,

(7)

where Uk(ρ), Zk(ρ), and Yk(ρ) are functions of the O(2)
invariant ρ = φ2/2. For a uniform field, the effective action
�k[φ] = V Uk(ρ) reduces to the effective potential Uk(ρ) (V
denotes the system volume). There are two O(∇2) terms,
reflecting the fact that longitudinal and transverse fluctuations
[w.r.t. the local order parameter φ(r)] are characterized by
different stiffnesses. Within the ansatz (7), the flow equation
(6) reduces to three coupled partial differential equations for
the functions Uk(ρ), Zk(ρ), and Yk(ρ). Since in two dimensions
the engineering dimension of the field is zero, it is a priori
important to keep the full field dependence of these functions
and not approximate them by a finite-order field expansion.
Notice that even if the initial condition is polynomial the flow
generates all terms allowed by symmetries (up to second order
in derivatives within our approach).

To solve numerically the flow equations and look for pos-
sible fixed points, it is convenient to introduce dimensionless
and renormalized quantities,

Ũk(ρ̃) = v−1
d k−dUk(ρ), Z̃k(ρ̃) = Z−1

k Zk(ρ),
(8)

Ỹk(ρ̃) = vdZ
−2
k kd−2Yk(ρ),

where ρ̃ = v−1
d Zkk

2−dρ. The factor v−1
d = 2d+1πd/2�(d/2)

is introduced for convenience (see Appendix A). The k-
dependent constant Zk is defined by imposing the condition
Z̃k(ρ̃r) = 1 where ρ̃r is an arbitrary renormalization point. The
(running) anomalous dimension is then defined by

ηk = −k∂k ln Zk, (9)

while the (true) anomalous dimension is simply η =
limk→0 ηk . The flow equations are given in Appendix A.

The effective potential Uk(ρ) and the location ρ0,k of its
minimum (corresponding to the equilibrium state) provide
information about the phase of the system. In a disordered
phase with a finite correlation length ξ , ρ0,k vanishes for a
value of k of the order of ξ−1. A nonzero value of limk→0 ρ0,k

would imply spontaneous symmetry breaking and is forbidden
by the Mermin-Wagner theorem when d = 2. It is, however,
possible that ρ0,k vanishes as a power law of k, which is in fact
the expected result when the order is algebraic (ξ = ∞).

Additional information can be obtained from the longi-
tudinal and transverse parts of the propagator in a uniform
field [35],

Gk,L(p; ρ) = {[Zk(ρ) + ρYk(ρ)]p2 + U ′
k(ρ) + 2ρU ′′

k (ρ)}−1,

Gk,T(p; ρ) = [Zk(ρ)p2 + U ′
k(ρ)]−1. (10)

In the equilibrium field configuration and for ρ0,k > 0, the
running stiffness ρs,k is defined by writing the transverse
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propagator as

Gk,T(p; ρ0,k) = 2ρ0,k

ρs,kp2
, (11)

where 2ρ0,k = 〈ϕ(r)〉2 is the square of the order parameter
at scale k. Note that the momentum dependence of Gk,T in
Eq. (11) follows from the derivative expansion and is therefore
valid only for |p| � k. Alternatively, ρs,k can be defined from
the change 
�k of the effective action when the direction of
the order parameter φ(r) = √

2ρ0,k[cos θ (r), sin θ (r)] at scale
k varies slowly in space,


�k[φ] = 1

2
ρs,k

∫
ddr (∇θ )2. (12)

Equations (11) and (12) lead to the same expression,

ρs,k = 2Zk(ρ0,k)ρ0,k, (13)

of the stiffness. The physical stiffness is defined as ρs(T ) =
limk→0 ρs,k(T ).

Equations (9) and (13) are crucial to understand the
long-distance behavior of the system when d = 2. In the
high-temperature phase both ρs,k and ρ0,k vanish for a nonzero
value of k of the order of the inverse of the correlation length
ξ . Zk reaches a finite limit for k → 0 since the anomalous
dimension η = limk→0 ηk vanishes. In the low-temperature
phase, we expect ηk and ρs,k to take a finite value in the limit
k → 0 (this implies Zk ∼ k−η for k → 0). This is possible
only if ρ0,k ∼ kη when k → 0, which is consistent with
ρ̃0,k = Zkρ0,k taking a finite limit (as expected for a critical
system). The result ρ0,k ∼ kη is in agreement with both the
absence of long-range order (limk→0 ρ0,k = 0) and an infinite
correlation length (ρ0,k > 0 for any k > 0).

III. NUMERICAL INTEGRATION OF RG EQUATIONS

A. Optimized regulator for d = 3

Let us first briefly review the determination of the critical
exponents in three dimensions. One can either integrate the
flow equations for various initial conditions until a fixed point
is reached, or linearize the flow equations about the fixed-point
solution defined by ∂t Ũ

∗ = ∂t Z̃
∗ = ∂t Ỹ

∗ = 0. If the flow
equation of the effective action �k[φ] were solved exactly, the
results would be independent of the infrared regulator Rk . This
is not the case when the effective action is expanded to second
order in a derivative expansion. In particular, with the regulator
(5), the critical exponents depend on the parameter α. We
determine what we consider as the optimal value of α from the
principle of minimal sensitivity (PMS) [39], i.e., by demanding
that locally the critical exponents are independent of α (e.g., for
the correlation-length exponent ν, dν/dα = 0 for α = αopt).
The renormalization point ρ̃r is taken fixed (for numerical
convenience), and, provided the fixed point exists, a change
in ρ̃r is equivalent to a change in α [40] so that the critical
exponents obtained from the PMS are independent of ρ̃r. Thus
the k-dependent renormalization point ρ̃0,k , which becomes
k independent at small k since ρ̃0,k → ρ̃∗

0 at criticality, is
equivalent to any other choice ρ̃r = const.

The results for the critical exponents ν and η are shown
in Tables I and II for the three-dimensional O(2) and O(3)

TABLE I. Critical exponents ν and η in the three-dimensional
O(2) model obtained from the derivative expansion to second order
and the principle of minimum sensitivity. Also shown are the results
obtained from field theory (FT) and Monte Carlo (MC) simulations.

NPRG FT [36] MC [37]

ν 0.6707 0.6700(6) 0.6717(1)
η 0.047 0.0334(2) 0.0381(2)

models. They compare very well with results from field theory
(resummed perturbative theory) and Monte Carlo simulations.

B. Optimized regulator for d = 2

In the two-dimensional case we numerically integrate the
flow equations of Ũ ′

k,Z̃k,Ỹk starting at scale k = 	 with the
bare action (1) and for various values of r0 ∝ T − T0 (we
take u0/	

2 = 0.003). From the behavior of the RG flow in
the k → 0 limit, we can clearly identify a high-temperature
and a low-temperature phase. The high-temperature phase is
characterized by the vanishing of ρs,k and ηk at a nonzero
value of k. In the low-temperature phase, both ρs,k and ηk

remain finite for k → 0 while ρ0,k vanishes as a power law as
anticipated in the preceding section. The transition temperature
TKT is defined from the critical value r0c separating the two
phases.

In the low-temperature phase and at fixed ρ̃r, the long-
distance behavior of the RG flow depends on the infrared
regulator [i.e., the parameter α in (5)] in a crucial way. We
expect the RG trajectory to flow into a fixed point as in
the standard KT theory. ηk and ρs,k [and more generally the
functions Ũk(ρ̃), Z̃k(ρ̃), and Ỹk(ρ̃)] should then become k

independent for sufficiently small k. Figure 1 shows that for
an arbitrary value of α, in general we do not reach a fixed
point, and ρs,k and ηk exhibit only quasiplateaus at small k

with slopes that are either positive or negative depending on
α. Thus, for each temperature T < TKT (but not too small,
see below), it is possible to fine tune α such that we obtain a
true plateau. We view this particular value αopt ≡ αopt(T ) as
the optimal choice of the regulator. We find αopt(TKT) = 2.0
and αopt(T ) < 2 for T < TKT. In the high-temperature phase,
we take αopt = 2. In the following sections, we shall always
consider the optimal regulators. The fact that αopt changes with
T is a limitation of the derivative expansion used to solve the
flow equation (6). In the exact solution, we expect the RG flow
to reach a fixed point in the low-temperature phase regardless
of the choice of the regulator. It should be noted, however, that
a nonoptimal choice (α �= αopt) leads to essentially the same
long-distance physics even though there is no fixed point. In
particular, the system exhibits algebraic order (except perhaps
at extremely large length scales). The ultimate fate of ρs,k and

TABLE II. Same as Table I but for the O(3) model.

NPRG FT [36] MC [38]

ν 0.719 0.7060(7) 0.7112(5)
η 0.0463 0.0333(3) 0.0375(5)
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FIG. 1. (Color online) ηk and ρs,k in the low-temperature phase
for α = 1.5,1.6,1.7,1.8,1.9,2 (from bottom to top in the inset of the
top figure and the reverse in the bottom inset) and a fixed temperature
T < TKT corresponding to r0 = −0.0016 (all figures are obtained
with u0/	

2 = 0.003 and 	 = 1).

ηk as k → 0 (which depends on the sign of the slope of the
quasiplateau) is clearly irrelevant at macroscopic length scales
of interest [41].

The optimal value αopt ≡ αopt(ρ̃r) depends on ρ̃r, but the
universal features of the KT transition are independent of the
choice of (ρ̃r,αopt(ρ̃r)). In the low-temperature phase, when ρ̃r

is too large the propagator Gk = (�(2)
k + Rk)−1 does not remain

positive definite due to the appearance of a pole at finite k, and
the RG flow cannot be continued to lower k [35,42]. The lower
the temperature, the smaller the renormalization point should
be. We find that ρ̃r must always be smaller than the minimum
ρ̃0,k of the effective potential because, otherwise, a pole in
the propagator appears at finite RG time t . Thus, it is never
possible to choose ρ̃r = ρ̃0,k . Below a certain temperature,
even with ρ̃r = 0, it is not possible to avoid the appearance of
a pole in the propagator. The lowest temperature that can be
reached corresponds to an anomalous dimension η(T ) � 0.17
(obtained with α = 1.45). It should be noted, however, that
the low-temperature regime T � TKT, which is dominated by
spinwave excitations, becomes trivial when one works with the
Goldstone boson (i.e., the phase of the complex field ϕ1 + iϕ2)
and there is no need to use the NPRG.

Figure 2 shows ρs,k and ηk for various temperatures below
the KT transition temperature, obtained with the optimal pa-
rameter αopt. The renormalized stiffness ρs(T ) = limk→0 ρs,k
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0.5

ηk

r0 = r0c

r0 − r0c = −3.69× 10−5

0 5 10 150
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2.5

3

ln(Λ/k)

ρs,k

r0 = r0c

r0 − r0c = −3.69× 10−5

FIG. 2. (Color online) Anomalous dimension ηk and stiffness
ρs,k vs ln(	/k) for α = αopt and various values of r0 from r0c �
−0.0015831 to r0c − 3.69 × 10−5.

and the anomalous dimension η(T ) = limk→0 ηk are obtained
from the plateau values of ρs,k and ηk . The highest temperature
for which we find a phase with a nonzero stiffness ρs(T )
provides an estimate r0c � −0.0015831 of the KT transition
temperature TKT. We shall discuss other determinations of TKT

in the following sections.

C. Comparison with GW

GW [19] evaluate the anomalous dimension ηk at the
flowing minimum of the effective potential while we compute
it at a fixed value of the (rescaled) field. Moreover GW do
not use the prefactor α of the infrared regulator as a free
parameter. As pointed out above, the choice ρ̃r = ρ̃0,k leads to
the appearance of a pole in the propagator at finite k. We
emphasize that this is not an accuracy problem but rather
an intrinsic feature of the flow equations in the derivative
expansion to second order. To circumvent this difficulty, GW
solve the flow equations only for a finite (scale-dependent)
range of ρ̃ values around ρ̃0,k [43]. Even though the GW
approach provides a way of computing some of the features
of the KT transition, the flow is bound to converge to the
high-temperature phase, and the line of fixed points is in fact
missing. In this respect our solution is a definite improvement.
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FIG. 3. (Color online) Longitudinal square mass 2Ũ ′′
k (ρ̃0,k)ρ̃0,k

vs ln(	/k) for various values of r0 − r0c in the low-T (−0.00162 �
r0 � r0c, solid lines) and high-T (r0c � r0 � −0.00154, dot-dashed
lines) phases.

IV. KT TRANSITION

A. Suppression of amplitude fluctuations and KT physics

Our results show that in the low-temperature phase as well
as in the high-temperature phase in the vicinity of the KT
transition, the dimensionless square “mass” 2ρ̃0,kŨ

′′
k (ρ̃0,k) of

the longitudinal mode [Eq. (10)] becomes much larger than
unity (Fig. 3). For k smaller than the characteristic momentum
scale kc defined by 2ρ̃0,kc

Ũ ′′
kc

(ρ̃0,kc
) ∼ 1, amplitude fluctuations

of the two-component vector field ϕ are strongly suppressed,
and the flow is primarily controlled by direction fluctuations
[44]. In this long-distance regime, we expect the physics of the
linear O(2) model to be similar to that of the XY model, i.e.,
dominated by spinwaves and vortex excitations. Note that we
do not expect amplitude fluctuations to be completely frozen
because this would prevent the formation of vortices since in
our continuum model the field vanishes at the center of the
vortex.

B. Low-temperature phase

In this section we discuss the results in the low-temperature
phase T � TKT. From the numerical results obtained for r0 →
r0c � −0.0015831 (Fig. 2), we deduce

ρs(T
−

KT) � 0.64, η(T −
KT) � 0.24, (14)

in very good agreement with the exact result ρs(T
−

KT) = 2/π �
0.6366 and η(T −

KT) = 1/4. By changing the initial value of u0

or including a (ϕ2)3 term in the action (1), we have verified
that these results are independent of the initial conditions.

Figure 4 shows ρs(T ) and η(T ) for T � TKT. The results
are compatible with the temperature dependence

ρs(T ) = ρs(r
−
0c)[1 + b

√
r0c − r0] (15)

(see Appendix B) of the stiffness in the vicinity of the
transition even though the square-root singularity is not
perfectly captured (we find the exponent 0.579 instead of 0.5).

-6×10-6 -4×10-6 -2×10-6 00.21

0.22

0.23

0.24

0.25

η(r0)
-6×10-6 -3×10-6 00.152

0.156

0.16

ηρs

-6×10-6 -4×10-6 -2×10-6 00

0.02

0.04

0.06

0.08

r0 − r0c

ρ
s(

r 0
)
−

ρ
s(

r 0
c)

4.516(r0c − r0)
0.579

10-7 10-6

10-2

10-1

FIG. 4. (Color online) Top: anomalous dimension η vs r0 − r0c in
the low-temperature phase for α = αopt. The inset shows the product
ηρs together with 1/2π (dashed line). Bottom: stiffness ρs vs r0 − r0c

in the low-temperature phase for α = αopt. The straight line in the
inset shows the best power-law fit (with an exponent 0.579) in a
logarithmic plot.

Furthermore we obtain

η(T ) � 0.155

ρs(T )
. (16)

In the KT theory the long-distance physics is fully determined
by noninteracting spinwaves with renormalized stiffness ρs(T )
since vortices are irrelevant in the low-temperature phase. This
leads to η(T ) = 1/2πρs(T ) � 0.159/ρs(T ) [45]. This exact
relation is well approximated by the NPRG result (16).

FIG. 5. (Color online) Fixed-point functions Ũ ∗′(ρ̃) (derivative
of the effective potential), Z̃∗(ρ̃) and Ỹ ∗(ρ̃) in the low-temperature
phase (η = 0.238 and α = 1.9).
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FIG. 6. (Color online) ln ln(	ξ ) vs ln(r0 − r0c) in the high-
temperature phase. The solid line corresponds to a fit of the form
(19) with γ � 0.48.

Figure 5 shows the fixed-point solutions Ũ ∗′(ρ̃), Z̃∗(ρ̃),
and Ỹ ∗(ρ̃) in the low-temperature phase (η(T ) = 0.238 and
αopt = 1.9).

C. High-temperature phase and essential scaling

In the high-temperature phase, the propagator takes the
form

Gk=0(p,ρ = 0) = [Zk=0(0)p2 + U ′
k=0(0)]−1 (17)

in the equilibrium field configuration ρ = 0. The correlation
length is given by

ξ =
[
U ′

k=0(0)

Zk=0(0)

]−1/2

(18)

and is shown in Fig. 6. The best fit of the form

ξ ∼ 	−1 exp

[
c

(r0 − r0c)γ

]
(19)

gives γ � 0.48 and c � 0.048. This result is in good agree-
ment with the essential singularity predicted by KT theory
(which corresponds to γ = 0.5). Equation (19) allows us to
obtain r0c � −0.00157746, to be compared with the previous
estimate r0c � −0.0015831 (Sec. III B). KT theory predicts
the product bc = π/2 to be universal (Appendix B) [46].
The NPRG results give bc � 0.34 (see next section for an
additional comment).

D. Comparison with standard KT flow

In the standard KT theory, the two variables of interest are
the stiffness ρs and the vortex fugacity y (Appendix B). In the
NPRG approach, we follow an infinite number of variables
[through the functions Uk(ρ), Zk(ρ), and Yk(ρ)], but we do not
have access to the vortex fugacity. To make a comparison with
the standard KT flow possible, we consider the beta function
βρs

= −kdρs/dk. The KT theory predicts

βρs
= −π (ρs − ρ∗

s )2 − 4

π
C (20)

1

0

ρs/ρ
∗
s

βρs

FIG. 7. (Color online) Beta function βρs
vs ρs for various values

of the initial fugacity y obtained from the standard KT theory
(Appendix B). The dashed (red) line shows the critical line corre-
sponding to T = TKT.

in the vicinity of ρ∗
s = 2/π , where C is a constant which

corresponds to different values of the initial vortex fugacity
and is expected to vary linearly with T − TKT (i.e., r0 − r0c;
see Fig. 7 and Appendix B). The NPRG result is shown in
Figs. 8 and 9. We obtain a qualitative agreement with KT
theory. In particular, in the high-temperature phase βρs

versus
ρs is given by parabolas whose distance to the axis βρs

= 0
varies linearly with r0 − r0c (Fig. 9). There are, however,
two differences with the predictions of KT theory. First, the
maxima of the parabolas are not located at ρ∗

s but are shifted
to lower values as r0 increases. This shift indicates that βρs

contains a linear term in addition to the quadratic one. This
linear term is, however, sufficiently small not to affect the
essential scaling except maybe for extremely large values of
the correlation length (Sec. IV C). Second, the prefactor of the

0.3 0.6 0.9 1.2-0.4

-0.3

-0.2

-0.1

0

ρs

βρs

FIG. 8. (Color online) Beta function βρs
= −kdρs/dk vs ρs ob-

tained from the NPRG for various initial conditions −0.00162 �
r0 � −0.00154. The dashed line corresponds to the critical value r0 =
−0.0015831 deduced from the k → 0 limit of ρs,k (Sec. III B) while
the dot-dashed line corresponds to the critical value r0 = −0.001577
deduced from the essential scaling of the correlation length in the
high-temperature phase (Sec. IV C).
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0.3 0.6-0.3

-0.2

-0.1

0

ρs

βρs

r0 = −0.00157
r0 = −0.00155
r0 = −0.00153
r0 = −0.00150

FIG. 9. (Color online) Beta function βρs
in the high-temperature

phase (r0 > r0c) obtained from the NPRG. The dashed lines corre-
spond to parabolic fits.

quadratic term varies with r0 and differs from −π . For the
high-temperature curves shown in Fig. 9, we find that it varies
between −10.76 and −3.48 as we go away from TKT. The fact
that we do not find the expected prefactor −π for the quadratic
term (in particular close to the KT transition temperature)
explains the failure to obtain the correct universal value of the
product bc (see preceding section). Very close to the transition
point, the beta function βρs

loses its parabolic shape and its
maximum seems to turn into a singular point. This region,
however, corresponds to a very large renormalization time
|t | = ln(	/k) and therefore an extremely large correlation
length, and we do not expect our results to be fully reliable.

V. CONCLUSION

The NPRG has proven to be a powerful method to study the
critical behavior of the d-dimensional O(N ) model [31,32]. In
this paper we have shown that this is true also in the special
case d = 2 and N = 2: the NPRG results turn out to be in very

good agreement, both qualitatively and quantitatively, with the
universal features of the KT transition.

While the KT transition has been understood for a long
time in the framework of the XY model, its investigation in
real materials raises new questions that are not easily answered
from the standard theory: the role of the vortex core energy or
the third dimension in layered quasi-two-dimensional systems
[47], the effect of disorder, the KT transition in the two-
dimensional Bose gas, the coupling to fermionic degrees of
freedom, etc. We believe that the NPRG can provide us with
new insights into these difficult problems. In particular we
would like to stress that the NPRG approach is by no means
restricted to ϕ4-type theories. This fact is of pronounced
importance when one aims at analyzing effective bosonic
theories derived from microscopic models, which naturally
arise for example in the context of superconductivity [48–54].
In this case an expansion of the action to finite order may
be ill-defined [50], and one must keep terms to all orders
in the field. We emphasize that the NPRG approach also
enables the computation of nonuniversal properties of the
system, retaining the link to the underlying microscopic model.
Progress in this direction in the context of two-dimensional
fermionic superfluids is underway.
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APPENDIX A: NPRG FLOW EQUATIONS

For the sake of generality we consider the O(n) model. The
flow equations for the dimensionless variables read

∂t Ũ
′
k = (ηk − 2)Ũ ′

k + ηkρ̃Ũ ′′
k − 2(n − 1)L(1,0,d)Ũ ′′

k − 2(n − 1)L(1,0,d + 2)Z̃′
k + L(0,1,d)

× (−4ρ̃Ũk
(3) − 6Ũ ′′

k

) − 2L(0,1,d + 2)(ρ̃Ỹ ′
k + Ỹk + Z̃′

k), (A1)

∂t Z̃k = ηkZ̃k − (−d − ηk + 2)ρ̃Z̃′
k − 2L(1,0,d)[(n − 1)Z̃′

k + Ỹk] + 16ρ̃L(1,1,d)Ũ ′′
k Z̃′

k + 8ρ̃L(1,1,d + 2)Z̃′
k(dỸk + Z̃′

k)

d

− 2L(0,1,d)(2ρ̃Z̃′′
k + Z̃′

k) − 16ρ̃(Ũ ′′
k )2MLT(2,2,d)

d
− 16ρ̃ỸkŨ

′′
k MLT(2,2,d + 2)

d
− 4ρ̃Ỹ 2

k MLT(2,2,d + 4)

d

+ 16ρ̃N (2,1,d)Ũ ′′
k (Ỹk − 2Z̃′

k)

d
+ 8ρ̃ỸkN (2,1,d + 2)(Ỹk − 2Z̃′

k)

d
(A2)

and

∂t Ỹk = (d − 2 + 2ηk)Ỹk − (−d − ηk + 2)ρ̃Ỹ ′
k − 8ỸkN (2,1,d + 2)(Ỹk − 2Z̃′

k)

d
− 16N (2,1,d)Ũ ′′

k (Ỹk − 2Z̃′
k)

d

+ 4(n − 1)ỸkL(2,0,d)Ũ ′′
k + 2L(1,0,d)

[
Ỹk

ρ̃
− (n − 1)Ỹ ′

k

]
+ 4(n − 1)L(2,0,d + 2)Z̃′

k(dỸk + Z̃′
k)

d

+ 8L(0,2,d)
(
2ρ̃Ũk

(3) + 3Ũ ′′
k

)
(ρ̃Ỹ ′

k + Ỹk + Z̃′
k) − 16L(1,1,d)Ũ ′′

k Z̃′
k − 2L(0,1,d)(5ρ̃Ỹ ′

k + 2ρ̃2Ỹ ′′
k + Ỹk)

ρ̃
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+ 4(2d + 1)L(0,2,d + 2)(ρ̃Ỹ ′
k + Ỹk + Z̃′

k)2

d
− 8L(1,1,d + 2)Z̃′

k(dỸk + Z̃′
k)

d
− 8ML(0,4,d)

(
2ρ̃Ũk

(3) + 3Ũ ′′
k

)
2

d

− 16ML(0,4,d + 2)
(
2ρ̃Ũk

(3) + 3Ũ ′′
k

)
(ρ̃Ỹ ′

k + Ỹk + Z̃′
k)

d
− 8ML(0,4,d + 4)(ρ̃Ỹ ′

k + Ỹk + Z̃′
k)2

d

+ 16ỸkMLT(2,2,d + 2)Ũ ′′
k

d
+ 16MLT(2,2,d)(Ũ ′′

k )2

d
+ 4Ỹ 2

k MLT(2,2,d + 4)

d
− 16(n − 1)MT(4,0,d + 2)Ũ ′′

k Z̃′
k

d

− 8(n − 1)MT(4,0,d)(Ũ ′′
k )2

d
− 8(n − 1)MT(4,0,d + 4)(Z̃′

k)2

d
. (A3)

Note that with the choice of normalization in Eqs. (8), the
angular factor vd does not appear in the flow equations.
Equations (A1)–(A3) must be solved with the initial conditions
Ũ	(ρ̃) = r̃0ρ̃ + (ũ0/6)ρ̃2, Z̃	(ρ̃) = 1, and Ỹ	(ρ̃) = 0, where
r̃0 = r0	

−2 and ũ0 = u0vd	
d−4.

The equation for ηk is obtained from the renormalization
condition ∂t Z̃k(ρ̃r) = 0. We have introduced the threshold
functions

L(n1,n2,d) = −1

2
∂̃t

∫ ∞

0
dy yd/2−1G̃

n1
T G̃

n2
L ,

MT(n1,n2,d) = −1

2
∂̃t

∫ ∞

0
dy yd/2G̃′

TG̃
n1−4
T G̃

n2
L ,

ML(n1,n2,d) = −1

2
∂̃t

∫ ∞

0
dy yd/2G̃′

LG̃
n1
T G̃

n2−4
L , (A4)

MLT(n1,n2,d) = −1

2
∂̃t

∫ ∞

0
dy yd/2G̃′

LG̃′
TG̃

n1−2
T G̃

n2−2
L ,

N (n1,n2,d) = 1

2
∂̃t

∫ ∞

0
dy yd/2G̃′

TG̃
n1−2
T G̃

n2
L ,

and the dimensionless transverse and longitudinal propagators
[see Eqs. (10)] [35]

G̃−1
L (y) = y[Z̃k + ρ̃Ỹk + r(y)] + Ũ ′

k + 2ρ̃Ũ ′′
k ,

G̃−1
T (y) = y[Z̃k + r(y)] + Ũ ′

k. (A5)

To alleviate the notations, we do not write explicitly the k and
ρ̃ dependence of the threshold functions and the propagators,
and we use G̃′ = ∂yG̃. The operator ∂̃t is defined by

∂̃t = (∂tRk)
∂

∂Rk

∣∣∣∣
R′

k

+(∂tR
′
k)

∂

∂R′
k

∣∣∣∣
Rk

,

∂tRk = −Zkk
2y(ηkr + 2yr ′), (A6)

∂tR
′
k = −Zk[ηkr + (ηk + 4)yr ′ + 2y2r ′′],

with R′
k(q2) = ∂q2Rk(q2) = Zk(r + yr ′), y = q2/k2, and r ≡

r(y), r ′ ≡ r ′(y), r ′′ ≡ r ′′(y).
The threshold functions are used here to present the flow

equations in a concise way. In practice, however, we write the
right-hand side of the flow equations as a single integral which
is computed using an equally spaced grid in the variable

√
y.

APPENDIX B: KT RG FLOW

In the standard KT theory, the two variables of interest are
the stiffness ρs and the vortex fugacity y. In the limit of small

fugacity, the RG equations read

dρs(l)−1

dl
= 4π3y(l)2 + O[y(l)4],

dy(l)

dl
= [2 − πρs(l)]y(l) + O[y(l)3],

(B1)

where we use the positive RG time l = ln(	/k) ≡ −t fol-
lowing usual notations (	−1 denotes a microscopic length
scale, e.g., the lattice spacing if we consider the XY model).
The corresponding flow diagram is shown in Fig. 10. The
RG trajectories in the plane (y,ρ−1

s ) are given by the
hyperbolas

y = 1

π4

(
ρ−1

s − π

2

)2

+ C

4π2
. (B2)

The critical trajectory is defined by C = 0, while C > 0 and
C < 0 correspond to the high- and low-temperature phases,
respectively. Assuming that C = b2(T − TKT) vanishes lin-
early with T − TKT and integrating the flow equations (B1)
we obtain [56]

ξ (T ) ∼ 	−1 exp

(
π

2b
√

T − TKT

)
(T → T +

KT) (B3)

10

ρ∗s/ρs

y

FIG. 10. (Color online) Schematic KT flow in the vicinity of y =
0,ρ∗

s = 2/π as obtained from Eqs. (B1). The dashed (red) line shows
the critical line corresponding to T = TKT.
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in the high-temperature phase and

ρs(T ) = 2

π
(1 + b

√
TKT − T ) (T → T −

KT) (B4)

in the low-temperature phase.
To make a comparison possible with the NPRG approach

to the linear O(2) model, where the vortex fugacity y is

not accessible, we consider the beta function βρs
= dρs(l)/dl

versus ρs(l). From Eqs. (B1), we deduce

βρs
= −π [ρs(l) − ρ∗

s ]2 − 4

π
C (B5)

in the vicinity of the critical point ρ∗
s = 2/π (Fig. 7). Different

curves are labeled by the constant C and correspond to different
values of the initial vortex fugacity y.
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