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Quantum Hall effect anomaly and collective modes
in the magnetic-field–induced spin-density-wave
phases of quasi–one-dimensional conductors

N. Dupuis(∗) and V. M. Yakovenko

Department of Physics and Center for Superconductivity Research
University of Maryland - College Park, MD 20742-4111, USA

(received 17 September 1998; accepted in final form 23 November 1998)

PACS. 72.15Nj – Collective modes (e.g., in one-dimensional conductors).
PACS. 73.40Hm– Quantum Hall effect (integer and fractional).
PACS. 75.30Fv – Spin-density waves.

Abstract. – We study the collective modes in the magnetic-field–induced spin-density-wave
(FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In
phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence
of two spin-density waves gives rise to additional long-wavelength collective modes besides
the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These
modes strongly affect the charge and spin response functions. We discuss some experimental
consequences for the Bechgaard salts.

Introduction. – The organic conductors of the Bechgaard salts family (TMTSF)2X (where
TMTSF stands for tetramethyltetraselenafulvalene) have remarkable properties in a magnetic
field. In three members of this family (X = ClO4, PF6, ReO4), a moderate magnetic field
of a few tesla destroys the metallic phase and induces a series of SDW phases separated by
first-order phase transitions [1, 2].

According to the so-called quantized nesting model (QNM) [2], the formation of the FISDWs
results from the strong anisotropy of these organic materials, which can be viewed as weakly
coupled chain systems (the typical ratio of the electron transfer integrals in the three crystal
directions is ta : tb : tc = 3000 : 300 : 10 K). The SDW opens a gap, but leaves closed pockets
of electrons and/or holes in the vicinity of the Fermi surface. In the presence of a magnetic field
H, these pockets are quantized into Landau levels (more precisely Landau subbands). In each
FISDW phase, the SDW wave vector is quantized, QN = (2kF +NG,Qy) with N integer, so
that an integer number of Landau subbands are filled. (Here kF is the Fermi momentum along
the chains, −e the electron charge, b the interchain spacing, and G = eHb/~.) As a result,
the Fermi level lies in a gap between two Landau subbands, the SDW phase is stable, and the
Hall conductivity is quantized: σxy = −2Ne2/h per one layer of the TMTSF molecules [3, 4].
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As the magnetic field increases, the value of the integer N changes, which leads to a cascade
of FISDW transitions.

A striking feature of the QHE in Bechgaard salts is the coexistence of both positive and
negative Hall plateaus. While most plateaus are of the same sign, referred to as positive by
convention, a negative Hall effect is also observed at certain pressures (the so-called Ribault
anomaly) [5].

We have recently explained the Ribault anomaly within the framework of the QNM by
taking umklapp processes into account [6]. Because of umklapp scattering, two linearly
polarized SDWs, with wave vectors QN = (2kF + NG, π/b) and Q−N = (2kF − NG, π/b),
coexist in the Ribault phase [7]. The quantum Hall conductivity is quantized: σxy = −2Ne2/h.
The integer N is negative (hence a negative Hall plateau) and corresponds to the SDW with
the largest amplitude. Experimentally, N = −2 and N = −4 are the most commonly observed
“negative” phases. Our explanation of the Ribault anomaly differs from the one suggested by
Zanchi and Montambaux [8] by invoking the pressure dependence of umklapp scattering rather
than the electron band structure.

In this letter, we study the long-wavelength collective modes in the FISDW phases that
exhibit the Ribault anomaly. The coexistence of two SDWs in these phases [7] gives rise to
additional collective modes besides the Goldstone modes resulting from spontaneous rotation
and translation symmetry breaking. We point out some analogies with phase modes in
two-band or bilayer superconductors [9, 10] and plasmon modes in semiconductor double-well
structure [11]. While these modes are generally difficult to observe, collective modes have
strong experimental consequences in SDW systems [12]. We discuss how the charge and spin
response functions are affected in the Ribault phase.

It should be pointed out that the long-wavelength modes are not the only modes of
interest in the FISDW phases. There also exist magneto-rotons at finite wave vectors
(qx = G, 2G, . . .) [13]. Within the Zanchi-Montambaux scheme, Lederer has recently shown
that these modes exhibit a different behavior in the Ribault phase [14]. The effect of umklapp
scattering on the magneto-rotons is not considered in this letter.

Mean-field theory. – In the vicinity of the Fermi energy, the electron dispersion law in the
Bechgaard salts is approximated as

E(kx, ky) = vF(|kx| − kF) + t⊥(kyb) , (1)

where kx and ky are the electron momenta along and across the one-dimensional chains of
TMTSF, and ~ = 1. In eq. (1), the longitudinal electron dispersion is linearized in kx in
the vicinity of the two one-dimensional Fermi points ±kF, and vF = 2ata sin(kFa) is the
corresponding Fermi velocity (a is the lattice spacing along the chains). The periodic function
t⊥(u) = t⊥(u+ 2π) describes the interchain hopping in a tight-binding approximation:

t⊥(kyb) = −2tb cos(kyb)− 2t2b cos(2kyb)− 2t3b cos(3kyb)− 2t4b cos(4kyb) . (2)

We neglect the electron dispersion in the third direction along the z-axis. t4b plays a crucial
role in the Ribault phase since (together with the umklapp scattering strength) it determines
the ratio of the amplitudes of the two SDWs. For t4b = 0, both SDWs have the same amplitude
(independently of the value of t3b). A finite t4b lifts this degeneracy. This yields a negative QHE
whenever sgn(t4b) = sgn(t2b) [6]. On the other hand, t3b does not affect directly the Ribault
phase [15]. Its only effect is to change the critical value of umklapp scattering above which the
Ribault phase becomes stable. As shown by Zanchi and Montambaux [8], a sufficiently strong
t3b (t3b & 0.2t2b) can stabilize a negative phase even in the absence of umklapp scattering. We
cannot exclude that both umklapp scattering and dispersion law play a role in stabilizing the
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Ribault phase at low pressure. However, whatever the mechanism at work, umklapp scattering
(not considered in the Zanchi-Montambaux theory) will always lead to the coexistence of two
SDWs in the Ribault phase.

The presence of a magnetic field along the z-direction is taken into account via the Peierls
substitution k = (kx, ky)→ −i∇−eA, where A is the vector potential. The magnetic field also
introduces the Zeeman coupling σµBH where σ = +(−) for up (down) spins. (µB is the Bohr
magneton. We take the electron gyromagnetic factor g equal to two.) We consider forward
and umklapp scatterings between electrons, with amplitudes g2 and g3, respectively. We do
not consider backward scattering, since it does not play an important role in the QNM [6].

In the FISDW phase, the electron spin density has a nonzero expectation value:

〈Sx(r)〉 =
∑
β=±

mβN cos(φβN ) cos(r ·QβN + θβN ),

〈Sy(r)〉 =
∑
β=±

mβN sin(φβN ) cos(r ·QβN + θβN ), (3)

where r = (x, y) is the spatial coordinate. Because of the Zeeman coupling with the magnetic
field, the SDWs are polarized in the (x, y)-plane. φN and φ−N determine the direction of the
spin magnetization, and θN and θ−N the position of the SDWs with respect to the crystal
lattice. The ratio |γ| = m−N/mN of the amplitudes of the two SDWs in the Ribault phase is
not precisely known. It depends on the detailed geometry of the Fermi surface (via t4b) and
increases with decreasing pressure. However, the stability of the Ribault phase against the
formation of two helicoidal (i.e. circularly polarized) SDWs requires |γ| . 0.5 [6].

The FISDW phases are characterized by the complex order parameters ∆βN,α defined by

∆α(r) = 〈ψ†−α,↓(r)ψα,↑(r)〉 =
∑
β=±

∆βN,αe
iαr·QβN . (4)

The operators ψ
(†)
α,σ(r) annihilate (create) electrons with spin σ and momenta close to αkF

(α = ±). The order parameters are entirely determined by the mean value of the spin density
(eq. (3)). In particular, |∆βN,+| = |∆βN,−| (β = ±) for sinusoidal (i.e. linearly polarized)
SDWs [6].

First we consider the zero-temperature condensation energy ∆E at the mean-field level
using the quantum limit approximation (QLA), also known as the single gap approximation.
This approximation is valid when vFG � T and consists in retaining only the gaps at the
Fermi level, neglecting those opening above and below the Fermi level [2, 6]. Introducing

∆̃βN,α = IβN (g2∆βN,α + g3∆−βN,−α) , (5)

we write the condensation energy as

∆E =
∑
α

{∑
β

∆∗βN,α∆̃βN,α

IβN
+
N(0)

2
|∆̃−N,α|

2 −
N(0)

2

∑
β

|∆̃βN,α|
2

(
1

2
+ ln

∣∣∣∣∣ 2E0

∆̃N,α

∣∣∣∣∣
)}

. (6)

Here E0 is an ultraviolet cutoff of the order of ta, and N(0) = 1/πvFb the density of states
per spin. The coefficients In ≡ In(qyb = π) are well known in the QNM. They depend on
the transverse dispersion law t⊥(kyb) and measure the degree of perfect nesting of the Fermi
surface [2, 6].

Minimizing ∆E with respect to the order parameters ∆βN,α, we find that the mean-field
ground state corresponds to θN = −θ−N and φN = φ−N . The latter relation shows that
both SDWs have the same polarization axis. The condition θN = −θ−N means that the two
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SDWs can be displaced in opposite directions without changing the energy of the system.
This property is related to the pinning that would occur for a commensurate SDW. Indeed,
for a single SDW with wave vector (2kF, π/b), the condition θN + θ−N = 0 becomes the
usual pinning condition θ = 0, where θ is the phase of the SDW [12]. The degeneracy of
the ground state results from rotational invariance around the z-axis in spin space [16] and
translational invariance in real space. The latter holds in the FISDW phases, since the SDWs
are incommensurate with respect to the crystal lattice [17].

According to the mean-field analysis, and in agreement with general symmetry considera-
tions, we therefore expect two (gapless) Goldstone modes: a spin-wave mode corresponding
to a uniform rotation around the z-axis of the common polarization axis, and a sliding mode
corresponding to a displacement of the two SDWs in opposite directions.

Long-wavelength collective modes. – Collective modes can be studied by expressing the
partition function as a functional integral over bosonic fields describing spin fluctuations [18].
The standard mean-field theory is recovered from a saddle-point approximation. Collective
modes are obtained studying small (Gaussian) fluctuations around the saddle point [19]. The
static mean-field order parameters ∆α(r) (eq. (4)) then become space- and time-dependent
fluctuating variables ∆α(r, τ) = ∆α(r) + δ∆α(r, τ). Here τ is an imaginary time. We use
the Matsubara formalism and obtain real-time quantities by standard analytic continuation.
Taking advantage of the decoupling of phase and amplitude modes in the long-wavelength
limit, we do not consider the latter. Order parameter fluctuations δ∆α(r, τ) then correspond
to fluctuations of the phase variables θ±N(r, τ) and φ±N (r, τ). Skipping technical details [20],
we only quote the final result for the collective modes, restricting ourselves to longitudinal
(i.e. parallel to the chains) fluctuations.

We find two Goldstone modes with a linear dispersion law ω = vFqx: a sliding mode and a
spin-wave mode corresponding to

θN (qx, ω) = −θ−N (qx, ω) , φN (qx, ω) = φ−N (qx, ω), (7)

respectively. θ±N (qx, ω) and φ±N (qx, ω) are the Fourier transforms of the phase variables
θ±N (x, t) and φ±N (x, t) (after analytic continuation to real time t). Equation (7) agrees with
previous conclusions drawn from the mean-field analysis. Notice that the oscillations of the
two SDWs are in-phase in the gapless spin-wave mode, and out-of-phase in the gapless sliding
mode.

We also find a gapped sliding mode, ω2 = v2
Fq

2
x + ω2

1, and a gapped spin-wave mode,
ω2 = v2

Fq
2
x + ω2

2, with

ω2
1 =

12

g2N(0)

r

1− r2

|∆̃N,+∆̃−N,+|

|INI−N |

3 + 5γ̃2

3γ̃2
, ω2

2 =
12

g2N(0)

r

1− r2

|∆̃N,+∆̃−N,+|

|IN I−N |

1− γ̃2

γ̃2
, (8)

where r = g3/g2 and γ̃ = ∆̃−N,+/∆̃N,+. γ̃ is related to γ = ∆−N,+/∆N,+ (|γ| = m−N/mN)
by γ = (γ̃IN − rI−N )/(I−N − rγ̃IN ). In the Ribault phase, |γ̃| ' |γ| [6]. With no loss of
generality, we choose ∆βN,α and ∆̃βN,α to be real. The gapped sliding mode corresponds to a
displacement of the two SDWs in the same direction (i.e. sgn[θN (x, t)] = sgn[θ−N (x, t)]),
while the gapped spin-wave mode corresponds to opposite rotations of the SDWs (i.e.
sgn[φN (x, t)] = −sgn[φ−N (x, t)]). In particular, when |γ̃| = |γ| = 1 (a situation reached when
|IN | = |I−N |), gapped modes correspond to θN = θ−N and φN = −rφ−N . Using the physical
parameters of the Bechgaard salts, we find that ω1 and ω2 are larger than the mean-field order
parameters |∆̃±N,±|, so that the gapped modes appear above the quasi-particle excitation gap
(generally within the first Landau subband above the Fermi level). Therefore, we expect these
modes to be strongly damped due to the coupling with quasi-particle excitations.
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There are some similarities between collective modes of the SDWs and phase modes oc-
curing in two-band or bilayer superconductors [9, 10]. g3/g2 plays the same role as the ratio
between the intraband (or intralayer) and interband (or interlayer) coupling constants. To
some extent, there are also analogies with plasmon modes occurring in conducting bilayer
systems [11]. While the corresponding phase modes in superconducting systems have not yet
been observed, plasmon modes in semiconductor double-well structures have been observed
recently via inelastic-light-scattering experiments [21].

Spectral functions. – Now we consider the spectral functions of the collective modes
of the SDWs: the spin-spin correlation function χret

yy (q,q′, ω) and the optical conductivity
σ(q, ω) = (i/ω)Πret(q, ω), where Πret is the current-current correlation function. Πret and χret

yy

are the retarded parts of the imaginary time correlation functions

Π(r, τ ; r′, τ ′) = 〈jDW(r, τ)jDW(r′, τ ′)〉, χyy(r, τ ; r′, τ ′) = 〈Sy(r, τ)Sy(r′, τ ′)〉 . (9)

jDW is the current along the chains carried by SDW fluctuations. For real ∆βN,α, the
mean-field magnetization (eq. (3)) is along the x-axis so that Sy corresponds to transverse
spin fluctuations. To lowest order in phase fluctuations [20]

jDW(r, τ) = −
ie

πb

∂

∂τ

θN (r, τ) − rγθ−N (r, τ)

1 + rγ
,

Sy(r, τ) = 2
∑
β

∆βN,+ cos(r ·QβN)φβN (r, τ) . (10)

jDW is a function of θ±N , while Sy is a function of φ±N . Thus, Π is determined by the sliding
modes, while χyy is determined by the spin-wave modes.

In the limit q = 0, the dissipative part of the conductivity is given by [22]

Re[σ(ω)] =
ω2

p

4

(
δ(ω)

3(1− γ̃2)

3 + 5γ̃2
+ δ(ω ± ω1)

4γ̃2

3 + 5γ̃2

)
. (11)

We have introduced the plasma frequency ωp =
√

8e2vF/b. Equation (11) satisfies the
conductivity sum rule

∫∞
−∞ dωRe[σ(ω)] = ω2

p/4. Quasi-particle excitations above the mean-
field gap do not contribute to the optical conductivity, a result well known in SDW systems [12].
Because both modes contribute to the conductivity, the low-energy (Goldstone) mode carries
only a fraction of the total spectral weight. We obtain Dirac peaks at ±ω1 because we have
neglected the coupling of the gapped mode with quasi-particle excitations. Also, in a real
system (with impurities), the Goldstone mode would broaden and appear at a finite frequency
(below the quasi-particle excitation gap) due to pinning by impurities. In the clean limit, which
is appropriate in (TMTSF)2X salts, the presence of impurities does not restore any significant
spectral weight to quasi-particle excitations above the mean-field gap [12]. Therefore, the
fraction of spectral weight carried by the two modes is correctly given by eq. (11). By measuring
the optical conductivity σ(ω), we can therefore obtain the ratio |γ̃| ' |γ| of the amplitudes
of the two SDWs. We have shown in ref. [6] that |γ̃| can vary between ∼ 0 and ∼ 0.5 in
the Ribault phase. Thus, the Goldstone mode can carry between ∼ 100% and ∼ 50% of the
total spectral weight. When this fraction is reduced below ∼ 50% (i.e. when |γ̃| & 0.5), the
Ribault phase becomes unstable against the formation of a helicoidal phase [6]. The low-energy
spectral weight is, therefore, also a measure of the stability of the sinusoidal Ribault phase
against the formation of a helicoidal phase. For a helicoidal structure, we cannot distinguish
between a uniform spin rotation and a global translation, so that there is only one type of
modes. Thus, in the helicoidal phase, we find a gapless Goldstone mode and a gapped mode.
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The Goldstone mode carries no current, and all the spectral weight is pushed up above the
quasi-particle excitation gap [20].

Due to the presence of SDWs, the spin-spin correlation function χret
yy is not diagonal in

momentum space, but has components χret
yy (q +αQβN ,q +α′Qβ′N , ω), where α, α′, β, β′ = ±

(see eqs. (9)-(10)). q corresponds to the momentum of the spin-wave mode and tends to
zero for long-wavelength fluctuations. We therefore consider the spectral function Im Trqχ

ret
yy ,

where Trq is a partial trace corresponding to a given spin-wave mode momentum q. In the
limit qy = 0, qx → 0, we obtain [22]

ImTrqχ
ret
yy =

2π

g2
2N(0)

|∆̃N,+∆̃−N,+|

|INI−N |

{
δ(ω − vFqx)

vFqx

[
−4r

(1− r2)2
+

(1 + r2)

(1− r2)2

γ̃2 + ζ2

|γ̃ζ|

]
+

+
δ(ω − ω2)

ω2

3(1 + r2)

2(1− r2)2

1− γ̃2

|γ̃ζ|

}
, (12)

for ω, qx > 0. ζ = I−N/IN . Both spin-wave modes contribute to the spectral function. The
spectral weight carried by the Goldstone mode diverges as 1/qx as expected for a quantum
antiferromagnet [19]. Equations (11) and (12) predict that all the spectral weight is carried by
the in-phase modes, i.e. the gapped sliding mode and the gapless spin-wave mode, whenever
both SDWs have the same amplitude (|γ̃| = |γ| = |ζ| = 1).

Conclusion. – We have shown that the Ribault anomaly in the FISDW phases of the
Bechgaard salts [5] is characterized not only by a sign reversal of the QHE, but also by a
rich structure of collective sliding and spin-wave modes. The presence of two SDWs in this
phase gives rise to in-phase and out-of-phase collective oscillations in the long-wavelength limit.
The out-of-phase sliding and in-phase spin-wave modes are gapless (Goldstone modes). The
in-phase sliding and out-of-phase spin-wave modes are gapped and are expected to appear
above the quasi-particle excitation gap in the Ribault phase. Charge and spin response
functions are strongly affected by the presence of these modes. In particular, we have shown
that the low-energy (Goldstone) sliding mode carries only a fraction of the total spectral
weight in the optical conductivity. By measuring the latter, we can obtain the ratio of the
amplitudes of the two SDWs that coexist in the Ribault phase. The low-energy spectral weight
is also a measure of the stability of the Ribault phase against the formation of helicoidal
SDWs. Helicoidal SDWs have been predicted in ref. [6] and are expected to appear at low
pressure (since |γ̃| increases with decreasing pressure). We have pointed out some analogies
with collective modes in two-band superconductors or bilayer systems [9-11]. The common
feature to all these collective modes is that they appear in a two-component system. To our
knowledge, it is the first time that such modes are predicted in SDW systems.
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