

# Introduction à la Physique Statistique

### Cours et TD (groupe 1)

Nicolas Sator

Laboratoire de Physique Théorique de la Matière Condensée UPMC, Jussieu, Tour 13-12,  $5^{eme}$  étage, bureau 5-08

Tél:  $01\ 44\ 27\ 72\ 39$  sator@lptmc.jussieu.fr

http://www.lptmc.jussieu.fr/users/sator

(rubrique "cours")

## TD (groupe 2)

 $\begin{array}{c} {\rm Marco~Tarzia} \\ {\bf LPTMC} \end{array}$ 

bureau 5-18 Tél: 01 44 27 72 40 tarzia@lptmc.jussieu.fr

#### Plan du cours

- A Description microscopique d'un système macroscopique
  - I Microétat d'un système
  - II Approche déterministe
  - III Passage du miscroscopique au macroscopique
- B Description statistique d'un système isolé : l'ensemble microcanonique
  - I Ensemble statistique et hypothèse ergodique
  - II Postulat fondamental
  - III Ensemble microcanonique
- C Thermodynamique statistique
  - I Interaction thermique entre systèmes macroscopiques
  - II Entropie statistique
  - III Approche de l'équilibre et irréversibilité
- D Ensembles canonique et grand-canonique
  - I Ensemble canonique et distribution de Boltzmann
  - II Fonction de partition et grandeurs thermodynamiques
  - III Distribution d'une variable interne et équilibre thermodynamique
  - IV Équipartition de l'énergie
  - V Ensembles grand-canonique et T-P
- E Particules en interaction et transitions de phase
  - I Fluides réels et transitions de phase liquide-gaz
  - II Ferromagnétisme et modèle d'Ising
  - III Transitions de phase continues et universalité

# Bibliographie

#### • Des classiques

- Statistical and Thermal Physics, F. Reif (McGraw-Hill International editions, 1985)
  [Très clair, en particulier sur les relations entre thermodynamique et mécanique statistique]
- Physique statistique, B. Diu, C. Guthmann, D. Lederer et B. Roulet (Hermann, Paris, 1989)
  [LE classique en français, complet mais dense]
- Elementary Statistical Physics, C. Kittel (Dover Publications, New York, 1986)
  [Un cours court mais précis]
- Statistical Mechanics, R. K. Pathria (Pergamon Press, Oxford, 1972)
  [Complet et savant]
- Physique statistique : Introduction, C. Ngô et H. Ngô (Dunod, 2008 ou Masson 1997)
  [Clair]
- Cours de physique de Berkeley volume 5: physique statistique, F. Reif (Armand Colin, 1997)
  [Vraiment basique]
- D'autres ouvrages, certains plus spécialisés
  - Introduction to Modern Statistical Mechanics, D. Chandler (Oxford University Press, 1987)
    [Très général]
  - Physique Statistique, L. Landau et E. Lifchitz (Éditions Mir, Moscou 1967)
    [Difficile]
  - Statistical Mechanics, K. Huang (John Wiley & Sons, New York 1988)
    [Plutôt difficile]
  - Lectures on phase transitions and the renormalization group, N. Goldenfeld (Addison-Wesley, 1992)
    [Une très bonne introduction au groupe de renormalisation qui dépasse le cadre de ce cours]
  - Statistical and mechanics: Entropy, Order Parameters, and Complexity, J. P. Sethna (Oxford University Press, 2006)
    - [Une approche originale qui présente des applications de la physique statistique à d'autres domaines scientifiques]
  - The principles of statistical mechanics, R. C. Tolman (Dover Publications, 1980)
    [Très formel]
  - Introduction à la mécanique statistique, R. Hakim (Masson, 1996)
    [En particulier, un chapitre intéressant sur l'irréversibilité]

#### • Le livre d'exercices

- La physique statistique en exercices, H. Krivine et J. Treiner (Vuibert, 2008)
  [Des problèmes classiques, d'autres originaux, clairement corrigés et commentés]
- Histoire des sciences et "vulgarisation"
  - Les atomes, J. Perrin (Champs Flammarion 1993)
  - Hasard et chaos, D. Ruelle (O. Jacob, Paris, 1991)
  - La mécanique statistique: De Clausius à Gibbs, A. Barberousse (Belin Sup Histoire des Sciences 2002)
  - La physique face à la probabilité, A. Barberousse (Librairie Philosophique J. Vrin, 2000)
  - Science of Chaos or Chaos in Science, J. Bricmont (article publié dans Physicalia Magazine 17 (1995), 159)